Ann Pediatr Endocrinol Metab.  2023 Mar;28(1):5-9. 10.6065/apem.2244288.144.

Ciliopathies in pediatric enodcrinology

Affiliations
  • 1Department of Pediatrics, University of Chieti, Chieti, Italy

Abstract

Ciliopathies are a group of disorders that involve many organs and systems. In this review, we consider the role of the cilium in multiorgan pathology with a focus on endocrinological aspects. Identification of new genes and mutations is the major challenge in development of a tailored and appropriate therapy. It is expected that new mutations will be identified to characterize ciliopathies and promote new therapies.

Keyword

Ciliopathies; Cilia; Signaling

Reference

References

1. Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet. 2006; 7:125–48.
2. Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr nephrol. 2011; 26:1039–56.
3. Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet. 2006; 43:326–33.
4. Budny B, Chen W, Omran H, Fliegauf M, Tzschach A, Wisniewska M, et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum Genet. 2006; 120:171–8.
5. Moalem S, Keating S, Shannon P, Thompson M, Millar K, Nykamp K, et al. Broadening the ciliopathy spectrum: motile cilia dyskinesia, and nephronophthisis associated with a previously unreported homozygous mutation in the INVS/NPHP2 gene. Am J Med Genet A. 2013; 161A:1792–6.
6. Shapiro AJ, Zariwala MA, Ferkol T, Davis SD, Sagel SD, Dell SD, et al. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol. 2016; 51:115–32.
7. Tobin JL, Beales PL. The nonmotile ciliopathies. Genet Med. 2009; 11:386–402.
8. Chang CF, Schock EN, Attia AC, Stottmann RW, Brugmann SA. The ciliary baton: orchestrating neural crest cell development. Curr Top Dev Biol. 2015; 111:97–134.
9. Marshall WF, Nonaka S. Cilia: tuning in to the cell's antenna. Curr Biol. 2006; 16:R604–14.
10. Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA. Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol. 2013; 14:713–26.
11. Gerdes JM, Davis EE, Katsanis N. The vertebrate primary cilium in development, homeostasis, and disease. Cell. 2009; 137:132–45.
12. Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P, et al. PDGFR alpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol. 2005; 15:1861–6.
13. Clement DL, Mally S, Stock C, Lethan M, Satir P, Schwab A, et al. PDGFRα signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90RSK and AKT signaling pathways. J Cell Sci. 2013; 126:953–65.
14. Heldin CH. Targeting the PDGF signaling pathway in the treatment of non-malignant diseases. J Neuroimmune Pharmacol. 2014; 9:69–79.
15. Christensen ST, Clement CA, Satir P, Pedersen LB. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol. 2012; 226:172–84.
16. Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol. 2019; 15:199–219.
17. Vestergaard ML, Awan A, Warzecha CB, Christensen ST, Andersen CY. Immunofluorescence microscopy and mRNA analysis of human embryonic stem cells (hESCs) including primary cilia associated signaling pathways. Methods Mol Biol. 2016; 1307:123–40.
18. Roosing S, Rosti RO, Rosti B, de Vrieze E, Silhavy JL, van Wijk E, et al. Identification of a homozygous nonsense mutation in KIAA0556 in a consanguineous family displaying Joubert syndrome. Hum Genet. 2016; 135:919–21.
19. Farmer A, Aymé S, de Heredia ML, Maffei P, McCafferty S, Młynarski W, et al. EURO-WABB: an EU rare diseases registry for Wolfram syndrome, Alström syndrome and Bardet-Biedl syndrome. BMC Pediatr. 2013; 13:130.
20. Álvarez-Satta M, Castro-Sánchez S, Valverde D. Bardet-Biedl syndrome as a chaperonopathy: dissecting the major role of chaperonin-like BBS proteins (BBS6-BBS10-BBS12). Front Mol Biosci. 2017; 4:55.
21. Khan SA, Muhammad N, Khan MA, Kamal A, Rehman ZU, Khan S. Genetics of human Bardet-Biedl syndrome, an updates. Clin Genet. 2016; 90:3–15.
22. Moore SJ, Green JS, Fan Y, Bhogal AK, Dicks E, Fernandez BA, et al. Clinical and genetic epidemiology of Bardet-Biedl syndrome in Newfoundland: a 22-year prospective, population-based, cohort study. Am J Med Genet A. 2005; 132A:352–60.
23. Feuillan PP, Ng D, Han JC, Sapp JC, Wetsch K, Spaulding E, et al. Patients with Bardet-Biedl syndrome have hyperleptinemia suggestive of leptin resistance. J Clin Endocrinol Metab. 2011; 96:E528–35.
24. Zhong M, Zhao X, Li J, Yuan W, Yan G, Tong M, et al. Tumor suppressor folliculin regulates mTORC1 through primary Cilia. J Biol Chem. 2016; 291:11689–97.
25. Bachmann-Gagescu R, Dempsey JC, Phelps IG, O'Roak BJ, Knutzen DM, Rue TC, et al. Joubert syndrome: a model for untangling recessive disorders with extreme genetic heterogeneity. J Med Genet. 2015; 52:514.
26. Lancaster MA, Gleeson JG. The primary cilium as a cellular signaling center: lessons from disease. Curr Opin Genet Dev. 2009; 19:220–9.
27. Valente EM, Dallapiccola B, Bertini E. Joubert syndrome and related disorders. Handb Clin Neurol. 2013; 113:1879–88.
28. Cauley ES, Hamed A, Mohamed IN, Elseed M, Martinez S, Yahia A, et al. Overlap of polymicrogyria, hydrocephalus, and Joubert syndrome in a family with novel truncating mutations in ADGRG1/GPR56 and KIAA0556. Neurogenetics. 2019; 20:91–8.
29. Sanders AA, de Vrieze E, Alazami AM, Alzahrani F, Malarkey EB, Sorusch N, et al. KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome. Genome Biol. 2015; 16:293.
30. Mujahid S, Hunt KF, Cheah YS, Forsythe E, Hazlehurst JM, Sparks K, et al. The endocrine and metabolic characteristics of a large bardet-biedl syndrome clinic population. J Clin Endocrinol Metab. 2018; 103:1834–41.
31. Mujahid S, Hunt KF, Cheah YS, Forsythe E, Hazlehurst JM, Sparks K, et al. The endocrine and metabolic characteristics of a large bardet-biedl syndrome clinic population. J Clin Endocrinol Metab. 2018; 103:1834–41.
32. Khoo EY, Risley J, Zaitoun AM, El-Sheikh M, Paisey RB, Acheson AG, et al. Alström syndrome and cecal volvulus in 2 siblings. Am J Med Sci. 2009; 337:383–5.
33. Álvarez-Satta M, Castro-Sánchez S, Valverde D. Alström syndrome: current perspectives. Appl Clin Genet. 2015; 8:171–9.
34. Marshall JD, Maffei P, Collin GB, Naggert JK. Alstrom syndrome: genetics and clinical overview. Curr Genomics. 2007; 15:1193–202.
35. Han JC, Reyes-Capo DP, Liu CY, Reynolds JC, Turkbey E, Turkbey IB, et al. Comprehensive endocrine-metabolic evaluation of patients with alström syndrome compared with BMI-matched controls. J Clin Endocrinol Metab. 2018; 103:2707–19.
36. Minton JA, Owen KR, Ricketts CJ, Crabtree N, Shaikh G, Ehtisham S, et al. Syndromic obesity and diabetes: changes in body composition with age and mutation analysis of ALMS1 in 12 United Kingdom kindreds with Alstrom syndrome. J Clin Endocrinol Metab. 2006; 91:3110–6.
37. Dassie F, Favaretto F, Bettini S, Parolin M, Valenti M, Reschke F, et al. Alström syndrome: an ultra-rare monogenic disorder as a model for insulin resistance, type 2 diabetes mellitus and obesity. Endocrine. 2021; 71:618–25.
38. Marshall JD, Bronson RT, Collin GB, Nordstrom AD, Maffei P, Paisey RB, et al. New Alström syndrome phenotypes based on the evaluation of 182 cases. Arch Intern Med. 2005; 165:675–83.
39. Romano S, Maffei P, Bettini V, Milan G, Favaretto F, Gardiman M, et al. Alström syndrome is associated with short stature and reduced GH reserve. Clin Endocrinol (Oxf). 2013; 79:529–36.
40. Alter CA, Moshang T Jr. Growth hormone deficiency in two siblings with Alström syndrome. Am J Dis Child. 1993; 147:97–9.
41. Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet. 2013; 14:681–91.
42. Sobreira N, Schiettecatte F, Valle D, Hamosh A. Gene matcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015; 36:928–30.
43. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell. 2013; 155:27–38.
44. Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev. 2013; 93:1019–137.
45. Jean S, Kiger AA. Classes of phosphoinositide 3-kinases at a glance. J Cell Sci. 2014; 127:923–8.
46. Wenk MR, Lucast L, Di Paolo G, Romanelli AJ, Suchy SF, Nussbaum RL, et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat Biotechnol. 2003; 21:813–7.
47. Falasca M, Maffucci T. Regulation and cellular functions of class II phosphoinositide 3-kinases. Bio chem J. 2012; 443:587–601.
48. Franco I, Gulluni F, Campa CC, Costa C, Margaria JP, Ciraolo E, et al. PI3K Class II α Controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function. Dev Cell. 2014; 28:647–58.
49. Davenport JR, Watts AJ, Roper VC, Croyle MJ, van Groen T, Wyss JM, et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr Biol. 2007; 17:1586–94.
50. Ostrowski LE, Yin W, Patel M, Sechelski J, Rogers T, Burns K, et al. Restoring ciliary function to differentiated primary ciliary dyskinesia cells with a lentiviral vector. Gene Ther. 2014; 21:253–61.
51. Bozal-Basterra L, Martin-Ruiz I, Pirone L, Liang Y, Sigurðsson JO, Gonzalez-Santamarta M, et al. Truncated SALL1 impedes primary cilia function in townes-brocks syndrome. Am J Hum Genet. 2018; 102:249–65.
52. Zhang W, Li L, Su Q, Gao G, Khanna H. Gene therapy using a miniCEP290 fragment delays photoreceptor degeneration in a mouse model of leber congenital amaurosis. Hum Gene Ther. 2018; 29:42–50.
53. Sokolic R, Kesserwan C, Candotti F. Recent advances in gene therapy for severe congenital immunodeficiency diseases. Curr Opin Hematol. 2008; 15:375–80.
Full Text Links
  • APEM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr