J Yeungnam Med Sci.  2023 Jan;40(1):12-22. 10.12701/jyms.2022.00444.

Long-term management of Graves disease: a narrative review

Affiliations
  • 1Division of Endocrinology and Metabolism, Department of Internal Medicine, Nowon Eulji University Hospital, Eulji University School of Medicine, Seoul, Korea

Abstract

Graves disease (GD) is the most common cause of hyperthyroidism, accounting for more than 90% of cases in Korea. Patients with GD are treated with any of the following: antithyroid drugs (ATDs), radioactive iodine (RAI) therapy, or thyroidectomy. Most patients begin treatment with ATDs, and clinical guidelines suggest that the appropriate treatment period is 12 to 18 months. While RAI treatment and surgery manage thyrotoxicosis by destroying or removing thyroid tissue, ATDs control thyrotoxicosis by inhibiting thyroid hormone synthesis and preserving the thyroid gland. Although ATDs efficiently control thyrotoxicosis symptoms, they do not correct the main etiology of GD; therefore, frequent relapses can follow. Recently, a large amount of data has been collected on long-term ATDs for GD, and low-dose methimazole (MMZ) is expected to be a good option for remission. For the long-term management of recurrent GD, it is important to induce remission by evaluating the patient’s drug response, stopping ATDs at an appropriate time, and actively switching to surgery or RAI therapy, if indicated. Continuing drug treatment for an extended time is now encouraged in patients with a high possibility of remission with low-dose MMZ. It is also important to pay attention to the quality of life of the patients. This review aimed to summarize the appropriate treatment methods and timing of treatment transition in patients who relapsed several times while receiving treatment for GD.

Keyword

Hyperthyroidism; Graves disease; Long-term management; Relapse; Review

Figure

  • Fig. 1. (A–C) Thyroid scans can assist in the differentiation of patients with thyroid diseases. Typical appearances of 99mTc pertechnetate scans are shown in (A) Graves disease, (B) thyroiditis, and (C) toxic nodular goiter. (D–F) Doppler ultrasonography views of Graves disease show a classic finding of increased blood flow in a 28-year-old man. (D) Transverse view of isthmic area and longitudinal views of the (E) right lobe and (F) left lobe of the thyroid gland.


Reference

References

1. Seo GH, Kim SW, Chung JH. Incidence & prevalence of hyperthyroidism and preference for therapeutic modalities in Korea. J Korean Thyroid Assoc. 2013; 6:56–63.
2. Mohlin E, Filipsson Nyström H, Eliasson M. Long-term prognosis after medical treatment of Graves’ disease in a northern Swedish population 2000-2010. Eur J Endocrinol. 2014; 170:419–27.
3. Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, et al. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 2016; 26:1343–421.
4. Kahaly GJ, Bartalena L, Hegedüs L, Leenhardt L, Poppe K, Pearce SH. 2018 European Thyroid Association guideline for the management of Graves’ hyperthyroidism. Eur Thyroid J. 2018; 7:167–86.
5. Shi H, Sheng R, Hu Y, Liu X, Jiang L, Wang Z, et al. Risk factors for the relapse of Graves’ disease treated with antithyroid drugs: a systematic review and meta-analysis. Clin Ther. 2020; 42:662–75.
6. García-Mayor RV, Álvarez-Vázquez P, Fluiters E, Valverde D, Andrade A. Long-term remission following antithyroid drug withdrawal in patients with Graves’ hyperthyroidism: parameters with prognostic value. Endocrine. 2019; 63:316–22.
7. Masiello E, Veronesi G, Gallo D, Premoli P, Bianconi E, Rosetti S, et al. Antithyroid drug treatment for Graves’ disease: baseline predictive models of relapse after treatment for a patient-tailored management. J Endocrinol Invest. 2018; 41:1425–32.
8. Vos XG, Endert E, Zwinderman AH, Tijssen JG, Wiersinga WM. Predicting the risk of recurrence before the start of antithyroid drug therapy in patients with Graves’ hyperthyroidism. J Clin Endocrinol Metab. 2016; 101:1381–9.
9. Smith TJ, Hegedüs L. Graves’ disease. N Engl J Med. 2016; 375:1552–65.
10. Morshed SA, Latif R, Davies TF. Delineating the autoimmune mechanisms in Graves’ disease. Immunol Res. 2012; 54:191–203.
11. Davies TF, Andersen S, Latif R, Nagayama Y, Barbesino G, Brito M, et al. Graves’ disease. Nat Rev Dis Primers. 2020; 6:52.
12. Antonelli A, Ferrari SM, Ragusa F, Elia G, Paparo SR, Ruffilli I, et al. Graves’ disease: epidemiology, genetic and environmental risk factors and viruses. Best Pract Res Clin Endocrinol Metab. 2020; 34:101387.
13. Kahaly GJ, Olivo PD. Graves’ disease. N Engl J Med. 2017; 376:184.
14. Brito JP, Castaneda-Guarderas A, Gionfriddo MR, Ospina NS, Maraka S, Dean DS, et al. Development and pilot testing of an encounter tool for shared decision making about the treatment of Graves’ disease. Thyroid. 2015; 25:1191–8.
15. Azizi F, Malboosbaf R. Long-term antithyroid drug treatment: a systematic review and meta-analysis. Thyroid. 2017; 27:1223–31.
16. Azizi F, Amouzegar A, Tohidi M, Hedayati M, Khalili D, Cheraghi L, et al. Increased remission rates after long-term methimazole therapy in patients with Graves’ disease: results of a randomized clinical trial. Thyroid. 2019; 29:1192–200.
17. Azizi F. Long-term treatment of hyperthyroidism with antithyroid drugs: 35 years of personal clinical experience. Thyroid. 2020; 30:1451–7.
18. Mooij CF, Cheetham TD, Verburg FA, Eckstein A, Pearce SH, Léger J, et al. 2022 European Thyroid Association guideline for the management of pediatric Graves’ disease. Eur Thyroid J. 2022; 11:e210073.
19. Bandai S, Okamura K, Fujikawa M, Sato K, Ikenoue H, Kitazono T. The long-term follow-up of patients with thionamide-treated Graves’ hyperthyroidism. Endocr J. 2019; 66:535–45.
20. Walter MA, Briel M, Christ-Crain M, Bonnema SJ, Connell J, Cooper DS, et al. Effects of antithyroid drugs on radioiodine treatment: systematic review and meta-analysis of randomised controlled trials. BMJ. 2007; 334:514.
21. Walter MA, Christ-Crain M, Schindler C, Müller-Brand J, Müller B. Outcome of radioiodine therapy without, on or 3 days off carbimazole: a prospective interventional three-group comparison. Eur J Nucl Med Mol Imaging. 2006; 33:730–7.
22. Bartalena L, Kahaly GJ, Baldeschi L, Dayan CM, Eckstein A, Marcocci C, et al. The 2021 European Group on Graves’ Orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur J Endocrinol. 2021; 185:G43–67.
23. Guo Z, Yu P, Liu Z, Si Y, Jin M. Total thyroidectomy vs bilateral subtotal thyroidectomy in patients with Graves’ diseases: a meta-analysis of randomized clinical trials. Clin Endocrinol (Oxf). 2013; 79:739–46.
24. Langley RW, Burch HB. Perioperative management of the thyrotoxic patient. Endocrinol Metab Clin North Am. 2003; 32:519–34.
25. Abraham P, Avenell A, Park CM, Watson WA, Bevan JS. A systematic review of drug therapy for Graves’ hyperthyroidism. Eur J Endocrinol. 2005; 153:489–98.
26. Abraham P, Avenell A, McGeoch SC, Clark LF, Bevan JS. Antithyroid drug regimen for treating Graves' hyperthyroidism. Cochrane Database Syst Rev. 2010; 2010:CD003420.
27. Mazza E, Carlini M, Flecchia D, Blatto A, Zuccarini O, Gamba S, et al. Long-term follow-up of patients with hyperthyroidism due to Graves’ disease treated with methimazole: comparison of usual treatment schedule with drug discontinuation vs continuous treatment with low methimazole doses: a retrospective study. J Endocrinol Invest. 2008; 31:866–72.
28. Park SY, Kim BH, Kim M, Hong AR, Park J, Park H, et al. The longer the antithyroid drug is used, the lower the relapse rate in Graves’ disease: a retrospective multicenter cohort study in Korea. Endocrine. 2021; 74:120–7.
29. Staniforth JU, Erdirimanne S, Eslick GD. Thyroid carcinoma in Graves’ disease: a meta-analysis. Int J Surg. 2016; 27:118–25.
30. Papanastasiou A, Sapalidis K, Goulis DG, Michalopoulos N, Mareti E, Mantalovas S, et al. Thyroid nodules as a risk factor for thyroid cancer in patients with Graves’ disease: a systematic review and meta-analysis of observational studies in surgically treated patients. Clin Endocrinol (Oxf). 2019; 91:571–7.
31. Santos RB, Romaldini JH, Ward LS. A randomized controlled trial to evaluate the effectiveness of 2 regimens of fixed iodine (¹³¹I) doses for Graves disease treatment. Clin Nucl Med. 2012; 37:241–4.
32. Park H, Kim HI, Park J, Park SY, Kim TH, Chung JH, et al. The success rate of radioactive iodine therapy for Graves’ disease in iodine-replete area and affecting factors: a single-center study. Nucl Med Commun. 2020; 41:212–8.
33. Abraham-Nordling M, Byström K, Törring O, Lantz M, Berg G, Calissendorff J, et al. Incidence of hyperthyroidism in Sweden. Eur J Endocrinol. 2011; 165:899–905.
34. Simon M, Rigou A, Le Moal J, Zeghnoun A, Le Tertre A, De Crouy-Chanel P, et al. Epidemiology of childhood hyperthyroidism in france: a nationwide population-based study. J Clin Endocrinol Metab. 2018; 103:2980–7.
35. Léger J, Gelwane G, Kaguelidou F, Benmerad M, Alberti C; French Childhood Graves’ Disease Study Group. Positive impact of long-term antithyroid drug treatment on the outcome of children with Graves’ disease: national long-term cohort study. J Clin Endocrinol Metab. 2012; 97:110–9.
36. Léger J, Carel JC. Management of endocrine disease: arguments for the prolonged use of antithyroid drugs in children with Graves’ disease. Eur J Endocrinol. 2017; 177:R59–67.
37. Azizi F, Takyar M, Madreseh E, Amouzegar A. Long-term methimazole therapy in juvenile Graves’ disease: a randomized trial. Pediatrics. 2019; 143:e20183034.
38. Wood CL, Cole M, Donaldson M, Dunger DB, Wood R, Morrison N, et al. Randomised trial of block and replace vs dose titration thionamide in young people with thyrotoxicosis. Eur J Endocrinol. 2020; 183:637–45.
39. van Lieshout JM, Mooij CF, van Trotsenburg AS, Zwaveling-Soonawala N. Methimazole-induced remission rates in pediatric Graves’ disease: a systematic review. Eur J Endocrinol. 2021; 185:219–29.
40. Lane LC, Rankin J, Cheetham T. A survey of the young person’s experience of Graves’ disease and its management. Clin Endocrinol (Oxf). 2021; 94:330–40.
41. Azizi F, Abdi H, Amouzegar A. Control of Graves’ hyperthyroidism with very long-term methimazole treatment: a clinical trial. BMC Endocr Disord. 2021; 21:16.
42. El Kawkgi OM, Ross DS, Stan MN. Comparison of long-term antithyroid drugs versus radioactive iodine or surgery for Graves’ disease: a review of the literature. Clin Endocrinol (Oxf). 2021; 95:3–12.
43. Alexander EK, Larsen PR. High dose of (131)I therapy for the treatment of hyperthyroidism caused by Graves’ disease. J Clin Endocrinol Metab. 2002; 87:1073–7.
44. Sundaresh V, Brito JP, Thapa P, Bahn RS, Stan MN. Comparative effectiveness of treatment choices for Graves’ hyperthyroidism: a historical cohort study. Thyroid. 2017; 27:497–505.
45. Azizi F, Ataie L, Hedayati M, Mehrabi Y, Sheikholeslami F. Effect of long-term continuous methimazole treatment of hyperthyroidism: comparison with radioiodine. Eur J Endocrinol. 2005; 152:695–701.
46. Azizi F, Yousefi V, Bahrainian A, Sheikholeslami F, Tohidi M, Mehrabi Y. Long-term continuous methimazole or radioiodine treatment for hyperthyroidism. Arch Iran Med. 2012; 15:477–84.
47. Cooper DS, Goldminz D, Levin AA, Ladenson PW, Daniels GH, Molitch ME, et al. Agranulocytosis associated with antithyroid drugs: effects of patient age and drug dose. Ann Intern Med. 1983; 98:26–9.
48. Bartalena L, Marcocci C, Bogazzi F, Manetti L, Tanda ML, Dell’Unto E, et al. Relation between therapy for hyperthyroidism and the course of Graves’ ophthalmopathy. N Engl J Med. 1998; 338:73–8.
49. Villagelin D, Romaldini JH, Santos RB, Milkos AB, Ward LS. Outcomes in relapsed Graves’ disease patients following radioiodine or prolonged low dose of methimazole treatment. Thyroid. 2015; 25:1282–90.
50. Ma C, Xie J, Wang H, Li J, Chen S. Radioiodine therapy versus antithyroid medications for Graves’ disease. Cochrane Database Syst Rev. 2016; 2:CD010094.
51. Watt T, Cramon P, Hegedüs L, Bjorner JB, Bonnema SJ, Rasmussen ÅK, et al. The thyroid-related quality of life measure ThyPRO has good responsiveness and ability to detect relevant treatment effects. J Clin Endocrinol Metab. 2014; 99:3708–17.
52. Törring O, Watt T, Sjölin G, Byström K, Abraham-Nordling M, Calissendorff J, et al. Impaired quality of life after radioiodine therapy compared to antithyroid drugs or surgical treatment for Graves’ hyperthyroidism: a long-term follow-up with the Thyroid-Related Patient-Reported Outcome Questionnaire and 36-Item Short Form Health Status Survey. Thyroid. 2019; 29:322–31.
53. Ljunggren JG, Törring O, Wallin G, Taube A, Tallstedt L, Hamberger B, et al. Quality of life aspects and costs in treatment of Graves’ hyperthyroidism with antithyroid drugs, surgery, or radioiodine: results from a prospective, randomized study. Thyroid. 1998; 8:653–9.
54. Abraham-Nordling M, Törring O, Hamberger B, Lundell G, Tallstedt L, Calissendorff J, et al. Graves’ disease: a long-term quality-of-life follow up of patients randomized to treatment with antithyroid drugs, radioiodine, or surgery. Thyroid. 2005; 15:1279–86.
55. Dale J, Daykin J, Holder R, Sheppard MC, Franklyn JA. Weight gain following treatment of hyperthyroidism. Clin Endocrinol (Oxf). 2001; 55:233–9.
56. Lane LC, Cheetham TD, Perros P, Pearce SH. New therapeutic horizons for Graves’ hyperthyroidism. Endocr Rev. 2020; 41:873–84.
57. Elia G, Fallahi P, Ragusa F, Paparo SR, Mazzi V, Benvenga S, et al. Precision medicine in Graves’ disease and ophthalmopathy. Front Pharmacol. 2021; 12:754386.
58. Pearce SH, Dayan C, Wraith DC, Barrell K, Olive N, Jansson L, et al. Antigen-specific immunotherapy with thyrotropin receptor peptides in Graves’ hyperthyroidism: a phase I study. Thyroid. 2019; 29:1003–11.
59. Salvi M, Vannucchi G, Currò N, Campi I, Covelli D, Dazzi D, et al. Efficacy of B-cell targeted therapy with rituximab in patients with active moderate to severe Graves’ orbitopathy: a randomized controlled study. J Clin Endocrinol Metab. 2015; 100:422–31.
60. Stan MN, Garrity JA, Carranza Leon BG, Prabin T, Bradley EA, Bahn RS. Randomized controlled trial of rituximab in patients with Graves’ orbitopathy. J Clin Endocrinol Metab. 2015; 100:432–41.
61. Paridaens D, van den Bosch WA, van der Loos TL, Krenning EP, van Hagen PM. The effect of etanercept on Graves’ ophthalmopathy: a pilot study. Eye (Lond). 2005; 19:1286–9.
62. Furmaniak J, Sanders J, Young S, Kabelis K, Sanders P, Evans M, et al. In vivo effects of a human thyroid-stimulating monoclonal autoantibody (M22) and a human thyroid-blocking autoantibody (K1-70). Auto Immun Highlights. 2011; 3:19–25.
63. Smith TJ, Kahaly GJ, Ezra DG, Fleming JC, Dailey RA, Tang RA, et al. Teprotumumab for thyroid-associated ophthalmopathy. N Engl J Med. 2017; 376:1748–61.
64. Douglas RS, Kahaly GJ, Patel A, Sile S, Thompson EH, Perdok R, et al. Teprotumumab for the treatment of active thyroid eye disease. N Engl J Med. 2020; 382:341–52.
Full Text Links
  • JYMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr