Korean J Pain.  2023 Jan;36(1):113-127. 10.3344/kjp.22225.

Primary somatosensory cortex and periaqueductal gray functional connectivity as a marker of the dysfunction of the descending pain modulatory system in fibromyalgia

Affiliations
  • 1Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
  • 2Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
  • 3Department of Psychiatry, Faculdade de Medicina, UFRGS, Porto Alegre, Brazil
  • 4ADHD Outpatient Program, HCPA, Porto Alegre, Brazil
  • 5Department of Internal Medicine, UFRGS, Porto Alegre, Brazil
  • 6Laboratory of Pharmacology in Pain and Neuromodulation: Pre-clinical Investigations, Experimental Research Center, HCPA, Porto Alegre, Brazil
  • 7Pain and Palliative Care Service, HCPA, Porto Alegre, Brazil
  • 8Laboratory of Neuromodulation and Center for Clinical Research Learning, Physics and Rehabilitation Department, Spaulding Rehabilitation Hospital, Boston, MA, USA

Abstract

Background
Resting-state functional connectivity (rs-FC) may aid in understanding the link between painmodulating brain regions and the descending pain modulatory system (DPMS) in fibromyalgia (FM). This study investigated whether the differences in rs-FC of the primary somatosensory cortex in responders and non-responders to the conditioned pain modulation test (CPM-test) are related to pain, sleep quality, central sensitization, and the impact of FM on quality of life.
Methods
This cross-sectional study included 33 females with FM. rs-FC was assessed by functional magnetic resonance imaging. Change in the numerical pain scale during the CPM-test assessed the DPMS function. Subjects were classified either as non-responders (i.e., DPMS dysfunction, n = 13) or responders (n = 20) to CPM-test. A generalized linear model (GLM) and a receiver operating characteristic (ROC) curve analysis were performed to check the accuracy of the rs-FC to differentiate each group.
Results
Non-responders showed a decreased rs-FC between the left somatosensory cortex (S1) and the periaqueductal gray (PAG) (P < 0.001). The GLM analysis revealed that the S1-PAG rs-FC in the left-brain hemisphere was positively correlated with a central sensitization symptom and negatively correlated with sleep quality and pain scores. ROC curve analysis showed that left S1-PAG rs-FC offers a sensitivity and specificity of 85% or higher (area under the curve, 0.78, 95% confidence interval, 0.63–0.94) to discriminate who does/does not respond to the CPM-test.
Conclusions
These results support using the rs-FC patterns in the left S1-PAG as a marker for predicting CPM-test response, which may aid in treatment individualization in FM patients.

Keyword

Central Nervous System Sensitization; Chronic Pain; Fibromyalgia; Functional Neuroimaging; Magnetic Resonance Imaging; Neural Pathways; Pain Perception; Periaqueductal Gray; Psychophysics; Somatosensory Cortex

Figure

  • Fig. 1 Timeline assessments. VAS: visual analog scale, CPM: conditioned pain modulation, NPS: numerical pain scale, fMRI: functional magnetic resonance imaging.

  • Fig. 2 Visual representation of rs-FC ROI-to-ROI analysis according to connectome ring view: (A) p-uncorrected, (B) after p-FDR (analysis-level correction), and (C) along with the 3D map. The blue line indicates lower rs-FC between left S1 and PAG in non-responders than in responders. Maps were made using the CONN-fMRI Functional Connectivity toolbox [51]. P ≤ 0.001, FDR ≤ 0.05. rs-FC: resting-state functional connectivity, ROI: region of interest, FDR: false discovery rate, PAG: periaqueductal gray, fMRI: functional magnetic resonance imaging, L_: left, R_: right, S1: primary somatosensory cortex, S2: secondary somatosensory cortex, M1: primary motor cortex, DLPFC: dorsolateral prefrontal cortex, MPFC: ventromedial prefrontal cortex, aIC: anterior insular cortex, pIC: posterior insular cortex, ACC: anterior cingulate cortex, VLTh: ventrolateral thalamus, MDTh: mediodorsal thalamus, Hippo: hippocampus, Amyg: amygdalae, NA: nucleus accumbens, 3D: three dimensional.

  • Fig. 3 Nonparametric receiver operating characteristics analysis. The area under the curve (AUC) with exact binomial 95% confidence intervals of S1-PAG rs-FC. rs-FC: resting-state functional connectivity, S1: primary somatosensory cortex, PAG: periaqueductal gray.


Reference

1. Sawaddiruk P, Paiboonworachat S, Chattipakorn N, Chattipakorn SC. 2017; Alterations of brain activity in fibromyalgia patients. J Clin Neurosci. 38:13–22. DOI: 10.1016/j.jocn.2016.12.014. PMID: 28087191.
2. Cagnie B, Coppieters I, Denecker S, Six J, Danneels L, Meeus M. 2014; Central sensitization in fibromyalgia? A systematic review on structural and functional brain MRI. Semin Arthritis Rheum. 44:68–75. DOI: 10.1016/j.semarthrit.2014.01.001. PMID: 24508406.
3. Bidari A, Ghavidel Parsa B, Ghalehbaghi B. 2018; Challenges in fibromyalgia diagnosis: from meaning of symptoms to fibromyalgia labeling. Korean J Pain. 31:147–54. DOI: 10.3344/kjp.2018.31.3.147. PMID: 30013729. PMCID: PMC6037812.
4. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. 2005; Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 9:463–84. DOI: 10.1016/j.ejpain.2004.11.001. PMID: 15979027.
5. Coulombe MA, Erpelding N, Kucyi A, Davis KD. 2016; Intrinsic functional connectivity of periaqueductal gray subregions in humans. Hum Brain Mapp. 37:1514–30. DOI: 10.1002/hbm.23117. PMID: 26821847. PMCID: PMC6867375.
6. Coulombe MA, Lawrence KS, Moulin DE, Morley-Forster P, Shokouhi M, Nielson WR, et al. 2017; Lower functional connectivity of the periaqueductal gray is related to negative affect and clinical manifestations of fibromyalgia. Front Neuroanat. 11:47. DOI: 10.3389/fnana.2017.00047. PMID: 28642688. PMCID: PMC5462926.
7. Ossipov MH, Dussor GO, Porreca F. 2010; Central modulation of pain. J Clin Invest. 120:3779–87. DOI: 10.1172/JCI43766. PMID: 21041960. PMCID: PMC2964993.
8. Staud R. 2009; Abnormal pain modulation in patients with spatially distributed chronic pain: fibromyalgia. Rheum Dis Clin North Am. 35:263–74. DOI: 10.1016/j.rdc.2009.05.006. PMID: 19647141. PMCID: PMC2720882.
9. Yarnitsky D, Bouhassira D, Drewes AM, Fillingim RB, Granot M, Hansson P, et al. 2015; Recommendations on practice of conditioned pain modulation (CPM) testing. Eur J Pain. 19:805–6. DOI: 10.1002/ejp.605. PMID: 25330039.
10. Kennedy DL, Kemp HI, Ridout D, Yarnitsky D, Rice ASC. 2016; Reliability of conditioned pain modulation: a systematic review. Pain. 157:2410–9. DOI: 10.1097/j.pain.0000000000000689. PMID: 27559835. PMCID: PMC5228613.
11. Soldatelli MD, Siepmann T, Illigens BM, Souza Dos Santos V, Lucena da S, Torres I, Fregni F, et al. 2021; Mapping of predictors of the disengagement of the descending inhibitory pain modulation system in fibromyalgia: an exploratory study. Br J Pain. 15:221–33. DOI: 10.1177/2049463720920760. PMID: 34055343. PMCID: PMC8138619.
12. Caumo W, Antunes LC, Elkfury JL, Herbstrith EG, Busanello Sipmann R, Souza A, et al. 2017; The Central Sensitization Inventory validated and adapted for a Brazilian population: psychometric properties and its relationship with brain-derived neurotrophic factor. J Pain Res. 10:2109–22. DOI: 10.2147/JPR.S131479. PMID: 28979158. PMCID: PMC5589103.
13. Baliki MN, Mansour AR, Baria AT, Apkarian AV. 2014; Functional reorganization of the default mode network across chronic pain conditions. PLoS One. 9:e106133. DOI: 10.1371/journal.pone.0106133. PMID: 25180885. PMCID: PMC4152156.
14. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Häuser W, Katz RL, et al. 2016; 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin Arthritis Rheum. 46:319–29. DOI: 10.1016/j.semarthrit.2016.08.012. PMID: 27916278.
15. Soper DS. 2022; Post-hoc Statistical Power Calculator for Hierarchical Multiple Regression [Software]. Available from: https://www.danielsoper.com/statcalc. DOI: 10.1016/j.semarthrit.2016.08.012,. PMID: 27916278.
16. Gomes-Oliveira MH, Gorenstein C, Lotufo Neto F, Andrade LH, Wang YP. 2012; Validation of the Brazilian Portuguese version of the Beck Depression Inventory-II in a community sample. Braz J Psychiatry. 34:389–94. DOI: 10.1016/j.rbp.2012.03.005. PMID: 23429809.
17. Sehn F, Chachamovich E, Vidor LP, Dall-Agnol L, de Souza IC, Torres IL, et al. 2012; Cross-cultural adaptation and validation of the Brazilian Portuguese version of the pain catastrophizing scale. Pain Med. 13:1425–35. DOI: 10.1111/j.1526-4637.2012.01492.x. PMID: 23036076.
18. Kaipper MB, Chachamovich E, Hidalgo MP, Torres IL, Caumo W. 2010; Evaluation of the structure of Brazilian State-Trait Anxiety Inventory using a Rasch psychometric approach. J Psychosom Res. 68:223–33. DOI: 10.1016/j.jpsychores.2009.09.013. PMID: 20159207.
19. Bertolazi AN, Fagondes SC, Hoff LS, Dartora EG, Miozzo IC, de Barba ME, et al. 2011; Validation of the Brazilian Portuguese version of the Pittsburgh Sleep Quality Index. Sleep Med. 12:70–5. DOI: 10.1016/j.sleep.2010.04.020. PMID: 21145786.
20. Whitfield-Gabrieli S, Nieto-Castanon A. 2012; Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2:125–41. DOI: 10.1089/brain.2012.0073. PMID: 22642651.
21. Bastos AM, Schoffelen JM. 2016; A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci. 9:175. DOI: 10.3389/fnsys.2015.00175. PMID: 26778976. PMCID: PMC4705224.
22. Behzadi Y, Restom K, Liau J, Liu TT. 2007; A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage. 37:90–101. DOI: 10.1016/j.neuroimage.2007.04.042. PMID: 17560126. PMCID: PMC2214855.
23. Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL. 2006; Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med Image Comput Comput Assist Interv. 9(Pt 2):58–66. DOI: 10.1007/11866763_8. PMID: 17354756.
24. Makris N, Goldstein JM, Kennedy D, Hodge SM, Caviness VS, Faraone SV, et al. 2006; Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res. 83:155–71. DOI: 10.1016/j.schres.2005.11.020. PMID: 16448806.
25. Tseng MT, Kong Y, Eippert F, Tracey I. 2017; Determining the neural substrate for encoding a memory of human pain and the influence of anxiety. J Neurosci. 37:11806–17. DOI: 10.1523/JNEUROSCI.0750-17.2017. PMID: 29097595. PMCID: PMC5719969.
26. Sours C, Alon G, Roys S, Gullapalli RP. 2014; Modulation of resting state functional connectivity of the motor network by transcranial pulsed current stimulation. Brain Connect. 4:157–65. DOI: 10.1089/brain.2013.0196. PMID: 24593667.
27. Tan Y, Wu X, Chen J, Kong L, Qian Z. 2019; Structural and functional connectivity between the amygdala and orbital frontal cortex in burning mouth syndrome: an fMRI study. Front Psychol. 10:1700. DOI: 10.3389/fpsyg.2019.01700. PMID: 31404248. PMCID: PMC6669911.
28. Sevel LS, Craggs JG, Price DD, Staud R, Robinson ME. 2015; Placebo analgesia enhances descending pain-related effective connectivity: a dynamic causal modeling study of endogenous pain modulation. J Pain. 16:760–8. DOI: 10.1016/j.jpain.2015.05.001. PMID: 26022539. PMCID: PMC4522336.
29. López-Solà M, Woo CW, Pujol J, Deus J, Harrison BJ, Monfort J, et al. 2017; Towards a neurophysiological signature for fibromyalgia. Pain. 158:34–47. DOI: 10.1097/j.pain.0000000000000707. PMID: 27583567. PMCID: PMC5161739.
30. Hazlett EA, Buchsbaum MS, Zhang J, Newmark RE, Glanton CF, Zelmanova Y, et al. 2008; Frontal-striatal-thalamic mediodorsal nucleus dysfunction in schizophrenia-spectrum patients during sensorimotor gating. Neuroimage. 42:1164–77. DOI: 10.1016/j.neuroimage.2008.05.039. PMID: 18588988. PMCID: PMC2548278.
31. Schreiber KL, Loggia ML, Kim J, Cahalan CM, Napadow V, Edwards RR. 2017; Painful after-sensations in fibromyalgia are linked to catastrophizing and differences in brain response in the medial temporal lobe. J Pain. 18:855–67. DOI: 10.1016/j.jpain.2017.02.437. PMID: 28300650. PMCID: PMC6102715.
32. Schmidt-Wilcke T, Ichesco E, Hampson JP, Kairys A, Peltier S, Harte S, et al. 2014; Resting state connectivity correlates with drug and placebo response in fibromyalgia patients. Neuroimage Clin. 6:252–61. DOI: 10.1016/j.nicl.2014.09.007. PMID: 25379438. PMCID: PMC4215460.
33. Manning J, Reynolds G, Saygin ZM, Hofmann SG, Pollack M, Gabrieli JD, et al. 2015; Altered resting-state functional connectivity of the frontal-striatal reward system in social anxiety disorder. PLoS One. 10:e0125286. DOI: 10.1371/journal.pone.0125286. PMID: 25928647. PMCID: PMC4416052. PMID: f0757f4a5c194145bd2c4188b35cb2eb.
34. Marques AP, Santos AMB, Assumpção A, Matsutani LA, Lage LV, Pereira CAB. 2006; Validation of the Brazilian version of the Fibromyalgia Impact Questionnaire (FIQ). Rev Bras Reumatol. 46:24–31. Portuguese. DOI: 10.1590/S0482-50042006000100006.
35. Schestatsky P, Stefani LC, Sanches PR, Silva Júnior DP, Torres IL, Dall-Agnol L, et al. 2011; Validation of a Brazilian quantitative sensory testing (QST) device for the diagnosis of small fiber neuropathies. Arq Neuropsiquiatr. 69:943–8. DOI: 10.1590/S0004-282X2011000700019. PMID: 22297885.
36. Botelho LM, Morales-Quezada L, Rozisky JR, Brietzke AP, Torres IL, Deitos A, et al. 2016; A framework for understanding the relationship between descending pain modulation, motor corticospinal, and neuroplasticity regulation systems in chronic myofascial pain. Front Hum Neurosci. 10:308. DOI: 10.3389/fnhum.2016.00308. PMID: 27445748. PMCID: PMC4921500.
37. Amorim P. 2000; Mini International Neuropsychiatric Interview (MINI): validation of a short structured diagnostic psychiatric interview. Braz J Psychiatry. 22:106–15. Portuguese. DOI: 10.1590/S1516-44462000000300003.
38. Hemington KS, Coulombe MA. 2015; The periaqueductal gray and descending pain modulation: why should we study them and what role do they play in chronic pain? J Neurophysiol. 114:2080–3. DOI: 10.1152/jn.00998.2014. PMID: 25673745.
39. Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE. 2010; Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 62:2545–55. DOI: 10.1002/art.27497. PMID: 20506181. PMCID: PMC2921024.
40. Cook DB, Stegner AJ, McLoughlin MJ. 2007; Imaging pain of fibromyalgia. Curr Pain Headache Rep. 11:190–200. DOI: 10.1007/s11916-007-0190-8. PMID: 17504646.
41. Gracely RH, Petzke F, Wolf JM, Clauw DJ. 2002; Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 46:1333–43. DOI: 10.1002/art.10225. PMID: 12115241.
42. Cardinal TM, Antunes LC, Brietzke AP, Parizotti CS, Carvalho F, De Souza A, et al. 2019; Differential neuroplastic changes in fibromyalgia and depression indexed by up-regulation of motor cortex inhibition and disinhibition of the descending pain system: an exploratory study. Front Hum Neurosci. 13:138. DOI: 10.3389/fnhum.2019.00138. PMID: 31105542. PMCID: PMC6494946.
43. Davis KD, Moayedi M. 2013; Central mechanisms of pain revealed through functional and structural MRI. J Neuroimmune Pharmacol. 8:518–34. DOI: 10.1007/s11481-012-9386-8. PMID: 22825710.
44. Donadel DG, Zortea M, Torres ILS, Fregni F, Caumo W. 2021; The mapping of cortical activation by near-infrared spectroscopy might be a biomarker related to the severity of fibromyalgia symptoms. Sci Rep. 11:15754. Erratum in: Sci Rep 2021; 11: 21257. DOI: 10.1038/s41598-021-94456-2. PMID: 34344913. PMCID: PMC8333354. PMID: 101a7d0a358041cfbd22bbc84a17c91b.
45. Ji G, Neugebauer V. 2009; Hemispheric lateralization of pain processing by amygdala neurons. J Neurophysiol. 102:2253–64. DOI: 10.1152/jn.00166.2009. PMID: 19625541. PMCID: PMC2776996.
46. Agcaoglu O, Miller R, Mayer AR, Hugdahl K, Calhoun VD. 2015; Lateralization of resting state networks and relationship to age and gender. Neuroimage. 104:310–25. Erratum in: Neuroimage 2018; 167: 504. DOI: 10.1016/j.neuroimage.2017.10.025. PMID: 29054365.
47. Galambos A, Szabó E, Nagy Z, Édes AE, Kocsel N, Juhász G, et al. 2019; A systematic review of structural and functional MRI studies on pain catastrophizing. J Pain Res. 12:1155–78. DOI: 10.2147/JPR.S192246. PMID: 31114299. PMCID: PMC6489670.
48. Lazaridou A, Kim J, Cahalan CM, Loggia ML, Franceschelli O, Berna C, et al. 2017; Effects of cognitive-behavioral therapy (CBT) on brain connectivity supporting catastrophizing in fibromyalgia. Clin J Pain. 33:215–21. DOI: 10.1097/AJP.0000000000000422. PMID: 27518491. PMCID: PMC5296218.
49. Cook DB, Lange G, Ciccone DS, Liu WC, Steffener J, Natelson BH. 2004; Functional imaging of pain in patients with primary fibromyalgia. J Rheumatol. 31:364–78. PMID: 14760810.
50. Gasparin A, Zortea M, Dos Santos VS, Carvalho F, Torres ILS, de Souza A, et al. 2020; Brain-derived neurotrophic factor modulates the effect of sex on the descending pain modulatory system in healthy volunteers. Pain Med. 21:2271–9. DOI: 10.1093/pm/pnaa027. PMID: 32167540.
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr