Korean J Pain.  2023 Jan;36(1):11-50. 10.3344/kjp.22397.

No more tears from surgical site infections in interventional pain management

Affiliations
  • 1Division of Infectious Diseases, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
  • 2Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea

Abstract

As the field of interventional pain management (IPM) grows, the risk of surgical site infections (SSIs) is increasing. SSI is defined as an infection of the incision or organ/space that occurs within one month after operation or three months after implantation. It is also common to find patients with suspected infection in an outpatient clinic. The most frequent IPM procedures are performed in the spine. Even though primary pyogenic spondylodiscitis via hematogenous spread is the most common type among spinal infections, secondary spinal infections from direct inoculation should be monitored after IPM procedures. Various preventive guidelines for SSI have been published. Cefazolin, followed by vancomycin, is the most commonly used surgical antibiotic prophylaxis in IPM. Diagnosis of SSI is confirmed by purulent discharge, isolation of causative organisms, pain/tenderness, swelling, redness, or heat, or diagnosis by a surgeon or attending physician. Inflammatory markers include traditional (C-reactive protein, erythrocyte sedimentation rate, and white blood cell count) and novel (procalcitonin, serum amyloid A, and presepsin) markers. Empirical antibiotic therapy is defined as the initial administration of antibiotics within at least 24 hours prior to the results of blood culture and antibiotic susceptibility testing. Definitive antibiotic therapy is initiated based on the above culture and testing. Combination antibiotic therapy for multidrug-resistant Gramnegative bacteria infections appears to be superior to monotherapy in mortality with the risk of increasing antibiotic resistance rates. The never-ending war between bacterial resistance and new antibiotics is continuing. This article reviews prevention, diagnosis, and treatment of infection in pain medicine.

Keyword

Anti-Bacterial Agents; Antibiotic Prophylaxis; Blood Culture; Cefazolin; C-Reactive Protein; Discitis; Drug Combinations; Drug Resistance; Bacterial; Guideline; Serum Amyloid A Protein; Surgical Wound Infection; Vancomycin

Figure

  • Fig. 1 The normal changes of useful perioperative inflammatory markers in a non-infection group for the detection of surgical site infection. The normal preoperative CRP value (< 0.5 mg/dL) increases up to 13.5 mg/dL on the 3rd day postoperatively. It will become theoretically normalized less than 0.5 mg/dL on the 16th day after 5 elimination half-lives (13 days) with a first-order elimination with a half-life of 2.6 days in a non-infection group after spine surgery [24,28]. The normal preoperative ESR value in the non-infection group is less than 10 mm/h and is elevated to an abnormal level from the 4th days and becomes normalized over 2 weeks postoperatively [32]. The normal preoperative WBC count is between 5,000 and 10,000/mm3. The WBC count has a peak up to 14,000/mm3 on the 1st day, maintains at the abnormal level of 11,000/mm3 on the 3rd day, and is normalized on the 7th day postoperatively [35]. The normal preoperative PCT level is less than 0.04 ng/mL, is increased up to 0.1 ng/mL on the 1st day postoperatively. Surgical site infection can be suspected if the value increased over 0.5 ng/mL from 1st day postoperatively as an early indicator of SSI [37]. SAA level reaches the maximum level up to 20 mg/L on the 3rd day, and significantly decreases but higher than the reference level (median value = 3 mg/L, less than 10 mg/L) on the 13th day [38]. The normal preoperative PSPN level is 55–184 pg/mL, and it is elevated within 2 hours and reaches the peak of less than 258 pg/mL within 3 hours. The elevated level of PSPN is normalized on the 7th day [43,44]. POD: postoperative day, CRP: C-reactive protein, ESR: erythrocyte sedimentation rate, WBC: white blood cell, PCT: procalcitonin, SAA: serum amyloid A, PSPN: presepsin.


Reference

1. Berríos-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. 2017; Centers for Disease Control and Prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg. 152:784–91. Erratum in: JAMA Surg 2017; 152: 803. DOI: 10.1001/jamasurg.2017.0904. PMID: 28467526.
2. European Centre for Disease Prevention and Control (ECDC). Surveillance of surgical site infections and prevention indicators in European hospitals. HAI-Net SSI protocol, version 2.2 [Internet]. ECDC;Stockholm: Available at: https://www.ecdc.europa.eu/sites/default/files/documents/HAI-Net-SSI-protocol-v2.2.pdf.
3. Skube SJ, Hu Z, Arsoniadis EG, Simon GJ, Wick EC, Ko CY, et al. 2017; Characterizing surgical site infection signals in clinical notes. Stud Health Technol Inform. 245:955–9. PMID: 29295241. PMCID: PMC6197986.
4. World Health Organization. Global guidelines for the prevention of surgical site infection, second edition [Internet]. World Health Organization;Geneva: Available at: https://apps.who.int/iris/bitstream/handle/10665/277399/9789241550475-eng.pdf?sequence=1&isAllowed=y.
5. Sepkowitz KA. 2011; One hundred years of Salvarsan. N Engl J Med. 365:291–3. DOI: 10.1056/NEJMp1105345. PMID: 21793743.
6. Williams KJ. 2009; The introduction of 'chemotherapy' using arsphenamine - the first magic bullet. J R Soc Med. 102:343–8. DOI: 10.1258/jrsm.2009.09k036. PMID: 19679737. PMCID: PMC2726818.
7. Aminov RI. 2010; A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 1:134. DOI: 10.3389/fmicb.2010.00134. PMID: 21687759. PMCID: PMC3109405.
8. Hutchings MI, Truman AW, Wilkinson B. 2019; Antibiotics: past, present and future. Curr Opin Microbiol. 51:72–80. DOI: 10.1016/j.mib.2019.10.008. PMID: 31733401.
9. Singh SB, Young K, Silver LL. 2017; What is an "ideal" antibiotic? Discovery challenges and path forward. Biochem Pharmacol. 133:63–73. DOI: 10.1016/j.bcp.2017.01.003. PMID: 28087253.
10. Kapoor G, Saigal S, Elongavan A. 2017; Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol. 33:300–5. DOI: 10.4103/joacp.JOACP_349_15. PMID: 29109626. PMCID: PMC5672523.
11. Tsantes AG, Papadopoulos DV, Vrioni G, Sioutis S, Sapkas G, Benzakour A, et al. 2020; Spinal infections: an update. Microorganisms. 8:476. DOI: 10.3390/microorganisms8040476. PMID: 32230730. PMCID: PMC7232330. PMID: 6a315fdb4c924598ad5598a308394e15.
12. Buckman SA, Turnbull IR, Mazuski JE. 2018; Empiric antibiotics for sepsis. Surg Infect (Larchmt). 19:147–54. DOI: 10.1089/sur.2017.282. PMID: 29341844.
13. Ahmed A, Azim A, Gurjar M, Baronia AK. 2014; Current concepts in combination antibiotic therapy for critically ill patients. Indian J Crit Care Med. 18:310–4. DOI: 10.4103/0972-5229.132495. PMID: 24914260. PMCID: PMC4047693.
14. Bassetti M, Righi E. 2015; New antibiotics and antimicrobial combination therapy for the treatment of gram-negative bacterial infections. Curr Opin Crit Care. 21:402–11. DOI: 10.1097/MCC.0000000000000235. PMID: 26263298.
15. Schmid A, Wolfensberger A, Nemeth J, Schreiber PW, Sax H, Kuster SP. 2019; Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: systematic review and meta-analysis. Sci Rep. 9:15290. DOI: 10.1038/s41598-019-51711-x. PMID: 31664064. PMCID: PMC6821042.
16. Shaffer WO, Baisden JL, Fernand R, Matz PG. North American Spine Society. 2013; An evidence-based clinical guideline for antibiotic prophylaxis in spine surgery. Spine J. 13:1387–92. DOI: 10.1016/j.spinee.2013.06.030. PMID: 23988461.
17. Follett KA, Boortz-Marx RL, Drake JM, DuPen S, Schneider SJ, Turner MS, et al. 2004; Prevention and management of intrathecal drug delivery and spinal cord stimulation system infections. Anesthesiology. 100:1582–94. DOI: 10.1097/00000542-200406000-00034. PMID: 15166581.
18. Ierano C, Nankervis JM, James R, Rajkhowa A, Peel T, Thursky K. 2017; Surgical antimicrobial prophylaxis. Aust Prescr. 40:225–9. DOI: 10.18773/austprescr.2017.073. PMID: 29377021. PMCID: PMC5768598.
19. Shawky Abdelgawaad A, El Sadik MHM, Hassan KM, El-Sharkawi M. 2021; Perioperative antibiotic prophylaxis in spinal surgery. SICOT J. 7:31. DOI: 10.1051/sicotj/2021029. PMID: 33973847. PMCID: PMC8112232. PMID: d6d97190b6e04bafbd510d122226d3e8.
20. Alexander JW, Solomkin JS, Edwards MJ. 2011; Updated recommendations for control of surgical site infections. Ann Surg. 253:1082–93. DOI: 10.1097/SLA.0b013e31821175f8. PMID: 21587113.
21. Schaison G, Graninger W, Bouza E. 2000; Teicoplanin in the treatment of serious infection. J Chemother. 12 Suppl 5:26–33. DOI: 10.1080/1120009X.2000.11782315. PMID: 11131961.
22. Schwartz RH, Southerland W, Urits I, Kaye AD, Viswanath O, Yazdi C. 2021; Successful reimplantation of spinal cord stimulator one year after device removal due to infection. Surg J (N Y). 7:e11–3. DOI: 10.1055/s-0040-1722179. PMID: 33542950. PMCID: PMC7850884. PMID: 61732cf0708a4943bd799ebe992dd38f.
23. Deer TR, Provenzano DA, Hanes M, Pope JE, Thomson SJ, Russo MA, et al. 2017; The Neurostimulation Appropriateness Consensus Committee (NACC) recommendations for infection prevention and management. Neuromodulation. 20:31–50. Erratum in: Neuromodulation 2017; 20: 516. DOI: 10.1111/ner.12565. PMID: 28042909.
24. Mok JM, Pekmezci M, Piper SL, Boyd E, Berven SH, Burch S, et al. 2008; Use of C-reactive protein after spinal surgery: comparison with erythrocyte sedimentation rate as predictor of early postoperative infectious complications. Spine (Phila Pa 1976). 33:415–21. DOI: 10.1097/BRS.0b013e318163f9ee. PMID: 18277874.
25. Pepys MB, Hirschfield GM. 2003; C-reactive protein: a critical update. J Clin Invest. 111:1805–12. Erratum in: J Clin Invest 2003; 112: 299. DOI: 10.1172/JCI200318921. PMID: 12813013. PMCID: PMC161431.
26. Black S, Kushner I, Samols D. 2004; C-reactive protein. J Biol Chem. 279:48487–90. DOI: 10.1074/jbc.R400025200. PMID: 15337754. PMCID: PMC9287136.
27. Du Clos TW. 2000; Function of C-reactive protein. Ann Med. 32:274–8. DOI: 10.3109/07853890009011772. PMID: 10852144.
28. Hoeller S, Roch PJ, Weiser L, Hubert J, Lehmann W, Saul D. 2021; C-reactive protein in spinal surgery: more predictive than prehistoric. Eur Spine J. 30:1261–9. DOI: 10.1007/s00586-021-06782-8. PMID: 33682035.
29. Bray C, Bell LN, Liang H, Haykal R, Kaiksow F, Mazza JJ, et al. 2016; Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ. 115:317–21. PMID: 29094869.
30. Zheng S, Wang Z, Qin S, Chen JT. 2020; Usefulness of inflammatory markers and clinical manifestation for an earlier method to diagnosis surgical site infection after spinal surgery. Int Orthop. 44:2211–9. DOI: 10.1007/s00264-020-04567-0. PMID: 32435956.
31. Jönsson B, Söderholm R, Strömqvist B. 1991; Erythrocyte sedimentation rate after lumbar spine surgery. Spine (Phila Pa 1976). 16:1049–50. DOI: 10.1097/00007632-199109000-00006. PMID: 1948395.
32. Zare A, Sabahi M, Safari H, Kiani A, Schmidt MH, Arjipour M. 2021; Spinal surgery and subsequent ESR and WBC changes pattern: a single center prospective study. Korean J Neurotrauma. 17:136–47. DOI: 10.13004/kjnt.2021.17.e33. PMID: 34760824. PMCID: PMC8558019.
33. Takahashi J, Shono Y, Hirabayashi H, Kamimura M, Nakagawa H, Ebara S, et al. 2006; Usefulness of white blood cell differential for early diagnosis of surgical wound infection following spinal instrumentation surgery. Spine (Phila Pa 1976). 31:1020–5. DOI: 10.1097/01.brs.0000214895.67956.60. PMID: 16641779.
34. Kraft CN, Krüger T, Westhoff J, Lüring C, Weber O, Wirtz DC, et al. 2011; CRP and leukocyte-count after lumbar spine surgery: fusion vs. nucleotomy. Acta Orthop. 82:489–93. DOI: 10.3109/17453674.2011.588854. PMID: 21657968. PMCID: PMC3237042.
35. Choi MK, Kim SB, Kim KD, Ament JD. 2014; Sequential changes of plasma C-reactive protein, erythrocyte sedimentation rate and white blood cell count in spine surgery: comparison between lumbar open discectomy and posterior lumbar interbody fusion. J Korean Neurosurg Soc. 56:218–23. DOI: 10.3340/jkns.2014.56.3.218. PMID: 25368764. PMCID: PMC4217058.
36. Aljabi Y, Manca A, Ryan J, Elshawarby A. 2019; Value of procalcitonin as a marker of surgical site infection following spinal surgery. Surgeon. 17:97–101. DOI: 10.1016/j.surge.2018.05.006. PMID: 30055952.
37. Nie H, Jiang D, Ou Y, Quan Z, Hao J, Bai C, et al. 2011; Procalcitonin as an early predictor of postoperative infectious complications in patients with acute traumatic spinal cord injury. Spinal Cord. 49:715–20. DOI: 10.1038/sc.2010.190. PMID: 21243003.
38. Deguchi M, Shinjo R, Yoshioka Y, Seki H. 2010; The usefulness of serum amyloid A as a postoperative inflammatory marker after posterior lumbar interbody fusion. J Bone Joint Surg Br. 92:555–9. DOI: 10.1302/0301-620X.92B4.22807. PMID: 20357334.
39. Sack GH Jr. 2018; Serum amyloid A - a review. Mol Med. 24:46. DOI: 10.1186/s10020-018-0047-0. PMID: 30165816. PMCID: PMC6117975.
40. Chahoud J, Kanafani Z, Kanj SS. 2014; Surgical site infections following spine surgery: eliminating the controversies in the diagnosis. Front Med (Lausanne). 1:7. DOI: 10.3389/fmed.2014.00007. PMID: 25705620. PMCID: PMC4335387.
41. Amanai E, Nakai K, Saito J, Hashiba E, Miura T, Morohashi H, et al. 2022; Usefulness of presepsin for the early detection of infectious complications after elective colorectal surgery, compared with C-reactive protein and procalcitonin. Sci Rep. 12:3960. DOI: 10.1038/s41598-022-06613-w. PMID: 35273185. PMCID: PMC8913670. PMID: 803c246d31954e9c9f2a4196b56e169e.
42. Lee S, Song J, Park DW, Seok H, Ahn S, Kim J, et al. 2022; Diagnostic and prognostic value of presepsin and procalcitonin in non-infectious organ failure, sepsis, and septic shock: a prospective observational study according to the Sepsis-3 definitions. BMC Infect Dis. 22:8. DOI: 10.1186/s12879-021-07012-8. PMID: 34983420. PMCID: PMC8725484. PMID: c993f5371dc846db8e23de9d736a450d.
43. Giavarina D, Carta M. 2015; Determination of reference interval for presepsin, an early marker for sepsis. Biochem Med (Zagreb). 25:64–8. DOI: 10.11613/BM.2015.007. PMID: 25672468. PMCID: PMC4401310.
44. Zhu X, Li K, Zheng J, Xia G, Jiang F, Liu H, et al. 2022; Usage of procalcitonin and sCD14-ST as diagnostic markers for postoperative spinal infection. J Orthop Traumatol. 23:25. DOI: 10.1186/s10195-022-00644-9. PMID: 35648304. PMCID: PMC9160164. PMID: 9c3ce183a3b346c995d7888bb5bd8d40.
45. Koakutsu T, Sato T, Aizawa T, Itoi E, Kushimoto S. 2018; Postoperative changes in presepsin level and values predictive of surgical site infection after spinal surgery: a single-center, prospective observational study. Spine (Phila Pa 1976). 43:578–84. DOI: 10.1097/BRS.0000000000002376. PMID: 28816823.
46. Zou Q, Wen W, Zhang XC. 2014; Presepsin as a novel sepsis biomarker. World J Emerg Med. 5:16–9. DOI: 10.5847/wjem.j.issn.1920-8642.2014.01.002. PMID: 25215141. PMCID: PMC4129857.
47. Cheng MP, Stenstrom R, Paquette K, Stabler SN, Akhter M, Davidson AC, et al. 2019; Blood culture results before and after antimicrobial administration in patients with severe manifestations of sepsis: a diagnostic study. Ann Intern Med. 171:547–54. DOI: 10.7326/M19-1696. PMID: 31525774.
48. Opota O, Croxatto A, Prod'hom G, Greub G. 2015; Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect. 21:313–22. DOI: 10.1016/j.cmi.2015.01.003. PMID: 25753137.
49. Khan ZA, Siddiqui MF, Park S. 2019; Current and emerging methods of antibiotic susceptibility testing. Diagnostics (Basel). 9:49. DOI: 10.3390/diagnostics9020049. PMID: 31058811. PMCID: PMC6627445.
50. Centers for Disease Control and Prevention (CDC). How antimicrobial resistance happens [Internet]. CDC;Washington, DC: Available at: https://www.cdc.gov/drugresistance/about/how-resistance-happens.html.
51. Jorgensen JH, Ferraro MJ. 2009; Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 49:1749–55. DOI: 10.1086/647952. PMID: 19857164.
52. Lewis JS II, Kirn TJ Jr, Weinstein MP, Limbago B, Bobenchik AM, Mathers AJ, et al. Clinical and Laboratory Standards Institute (CLSI). M100: performance standards for antimicrobial susceptibility testing [Internet]. 32nd ed. CLSI;Malvern (PA): Available at: https://clsi.org/standards/products/microbiology/documents/m100/.
53. European Committee on Antimicrobial Susceptibility Testing (EUCAST). European Society of Clinical Microbiology and Infectious Diseases. Rationale documents from EUCAST [Internet]. EUCAST;Copenhagen: Available at: http://eucast.org/publications-and-documents/rd.
54. Humphries RM, Abbott AN, Hindler JA. 2019; Understanding and addressing CLSI breakpoint revisions: a primer for clinical laboratories. J Clin Microbiol. 57:e00203–19. DOI: 10.1128/JCM.00203-19. PMID: 30971460. PMCID: PMC6535595.
55. Brown D, Macgowan A. 2010; Harmonization of antimicrobial susceptibility testing breakpoints in Europe: implications for reporting intermediate susceptibility. J Antimicrob Chemother. 65:183–5. DOI: 10.1093/jac/dkp432. PMID: 19996143.
56. Prinzi A. Updating breakpoints in antimicrobial susceptibility testing [Internet]. American Society for Microbiology;Washington, DC: Available at: https://asm.org/Articles/2022/February/Updating-Breakpoints-in-Antimicrobial-Susceptibili.
57. Andrews JM. 2001; Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 48 Suppl 1:5–16. Erratum in: J Antimicrob Chemother 2002; 49: 1049. DOI: 10.1093/jac/dkf083. PMID: 11420333.
58. Saito A, Inamatsu T, Okada J, Oguri T, Kanno H, Kusano N, et al. 1999; Clinical breakpoints in pulmonary infections and sepsis: new antimicrobial agents and supplemental information for some agents already released. J Infect Chemother. 5:223–6. DOI: 10.1007/s101560050041. PMID: 11810523.
59. Tulane University School of Medicine. MIC and time- vs. concentration-dependent killing [Internet]. Tulane University School of Medicine;New Orleans (LA): Available at: https://tmedweb.tulane.edu/pharmwiki/doku.php/time-_concentration-dependent_killing.
60. Choi EJ, Ri HS, Park H, Kim HJ, Yoon JU, Byeon GJ. 2021; Unexpected extrusion of the implantable pulse generator of the spinal cord stimulator - a case report. Anesth Pain Med (Seoul). 16:103–7. DOI: 10.17085/apm.20054. PMID: 33461245. PMCID: PMC7861903.
61. Yazdi C, Finn R. 2017; Management of intrathecal pump site infection in a patient with metastatic breast cancer without the removal of the system, a case report. J Anesth Intensive Care Med. 1:555568. DOI: 10.19080/JAICM.2017.01.555568.
62. Falowski SM, Provenzano DA, Xia Y, Doth AH. 2019; Spinal cord stimulation infection rate and risk factors: results from a United States payer database. Neuromodulation. 22:179–89. DOI: 10.1111/ner.12843. PMID: 30117635. PMCID: PMC6585777.
63. Bendel MA, O'Brien T, Hoelzer BC, Deer TR, Pittelkow TP, Costandi S, et al. 2017; Spinal cord stimulator related infections: findings from a multicenter retrospective analysis of 2737 implants. Neuromodulation. 20:553–7. DOI: 10.1111/ner.12636. PMID: 28726312.
64. Hoelzer BC, Bendel MA, Deer TR, Eldrige JS, Walega DR, Wang Z, et al. 2017; Spinal cord stimulator implant infection rates and risk factors: a multicenter retrospective study. Neuromodulation. 20:558–62. DOI: 10.1111/ner.12609. PMID: 28493599.
65. Loubet P, Burdet C, Vindrios W, Grall N, Wolff M, Yazdanpanah Y, et al. 2018; Cefazolin versus anti-staphylococcal penicillins for treatment of methicillin-susceptible Staphylococcus aureus bacteraemia: a narrative review. Clin Microbiol Infect. 24:125–32. DOI: 10.1016/j.cmi.2017.07.003. PMID: 28698037.
66. Brook I. 1989; Inoculum effect. Rev Infect Dis. 11:361–8. DOI: 10.1093/clinids/11.3.361. PMID: 2664999.
67. Miller WR, Seas C, Carvajal LP, Diaz L, Echeverri AM, Ferro C, et al. 2018; The cefazolin inoculum effect is associated with increased mortality in methicillin-susceptible Staphylococcus aureus bacteremia. Open Forum Infect Dis. 5:ofy123. DOI: 10.1093/ofid/ofy123. PMID: 29977970. PMCID: PMC6007512.
68. Lenhard JR, Bulman ZP. 2019; Inoculum effect of β-lactam antibiotics. J Antimicrob Chemother. 74:2825–43. DOI: 10.1093/jac/dkz226. PMID: 31170287. PMCID: PMC6753498.
69. Carmona-Fontaine C, Xavier JB. 2012; Altruistic cell death and collective drug resistance. Mol Syst Biol. 8:627. DOI: 10.1038/msb.2012.60. PMID: 23169003. PMCID: PMC3531905.
70. Bamberger DM, Boyd SE. 2005; Management of Staphylococcus aureus infections. Am Fam Physician. 72:2474–81. PMID: 16370403.
71. Warner NS, Schaefer KK, Eldrige JS, Lamer TJ, Pingree MJ, Bendel MA, et al. 2021; Peripheral nerve stimulation and clinical outcomes: a retrospective case series. Pain Pract. 21:411–8. DOI: 10.1111/papr.12968. PMID: 33222402.
72. Ilfeld BM, Gabriel RA, Saulino MF, Chae J, Peckham PH, Grant SA, et al. 2017; Infection rates of electrical leads used for percutaneous neurostimulation of the peripheral nervous system. Pain Pract. 17:753–62. DOI: 10.1111/papr.12523. PMID: 27676323. PMCID: PMC5368033.
73. Delhaas EM, Huygen FJPM. 2020; Complications associated with intrathecal drug delivery systems. BJA Educ. 20:51–7. DOI: 10.1016/j.bjae.2019.11.002. PMID: 33456930. PMCID: PMC7807963.
74. Malheiro L, Gomes A, Barbosa P, Santos L, Sarmento A. 2015; Infectious complications of intrathecal drug administration systems for spasticity and chronic pain: 145 patients from a tertiary care center. Neuromodulation. 18:421–7. DOI: 10.1111/ner.12265. PMID: 25580571.
75. Ruppen W, Derry S, McQuay HJ, Moore RA. 2007; Infection rates associated with epidural indwelling catheters for seven days or longer: systematic review and meta-analysis. BMC Palliat Care. 6:3. DOI: 10.1186/1472-684X-6-3. PMID: 17408476. PMCID: PMC1858684.
76. Harde M, Bhadade R, Iyer H, Jatale A, Tiwatne S. 2016; A comparative study of epidural catheter colonization and infection in Intensive Care Unit and wards in a Tertiary Care Public Hospital. Indian J Crit Care Med. 20:109–13. DOI: 10.4103/0972-5229.175943. PMID: 27076712. PMCID: PMC4810923.
77. Brown MM, Horswill AR. 2020; Staphylococcus epidermidis-skin friend or foe? PLoS Pathog. 16:e1009026. DOI: 10.1371/journal.ppat.1009026. PMID: 33180890. PMCID: PMC7660545. PMID: 9514af7e11c54d9ba18f54122ad4f839.
78. Cau L, Williams MR, Butcher AM, Nakatsuji T, Kavanaugh JS, Cheng JY, et al. 2021; Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J Allergy Clin Immunol. 147:955–66.e16. DOI: 10.1016/j.jaci.2020.06.024. PMID: 32634452. PMCID: PMC8058862.
79. Otto M. 2009; Staphylococcus epidermidis--the 'accidental' pathogen. Nat Rev Microbiol. 7:555–67. DOI: 10.1038/nrmicro2182. PMID: 19609257. PMCID: PMC2807625.
80. Kumar G, Kumar N, Taneja A, Kaleekal T, Tarima S, McGinley E, et al. Milwaukee Initiative in Critical Care Outcomes Research (MICCOR) Group of Investigators. 2011; Nationwide trends of severe sepsis in the 21st century (2000-2007). Chest. 140:1223–31. DOI: 10.1378/chest.11-0352. PMID: 21852297.
81. de Jong PC, Kansen PJ. 1994; A comparison of epidural catheters with or without subcutaneous injection ports for treatment of cancer pain. Anesth Analg. 78:94–100. DOI: 10.1213/00000539-199401000-00017. PMID: 8267188.
82. Shim J, Seo TS, Song MG, Cha IH, Kim JS, Choi CW, et al. 2014; Incidence and risk factors of infectious complications related to implantable venous-access ports. Korean J Radiol. 15:494–500. DOI: 10.3348/kjr.2014.15.4.494. PMID: 25053910. PMCID: PMC4105813.
83. Kim KH, Seo HJ, Abdi S, Huh B. 2020; All about pain pharmacology: what pain physicians should know. Korean J Pain. 33:108–20. DOI: 10.3344/kjp.2020.33.2.108. PMID: 32235011. PMCID: PMC7136290.
84. Park JW, Park SM, Lee HJ, Lee CK, Chang BS, Kim H. 2018; Infection following percutaneous vertebral augmentation with polymethylmethacrylate. Arch Osteoporos. 13:47. DOI: 10.1007/s11657-018-0468-y. PMID: 29704173.
85. Abdelrahman H, Siam AE, Shawky A, Ezzati A, Boehm H. 2013; Infection after vertebroplasty or kyphoplasty. A series of nine cases and review of literature. Spine J. 13:1809–17. DOI: 10.1016/j.spinee.2013.05.053. PMID: 23880354.
86. Hernandez L, Muñoz ME, Goñi I, Gurruchaga M. 2008; New injectable and radiopaque antibiotic loaded acrylic bone cements. J Biomed Mater Res B Appl Biomater. 87:312–20. DOI: 10.1002/jbm.b.31105. PMID: 18464250.
87. Pellegrini AV, Suardi V. 2020; Antibiotics and cement: what I need to know? Hip Int. 30(1_suppl):48–53. DOI: 10.1177/1120700020915463. PMID: 32290707.
88. Kim WS, Kim KH. 2021; Percutaneous osteoplasty for painful bony lesions: a technical survey. Korean J Pain. 34:375–93. DOI: 10.3344/kjp.2021.34.4.375. PMID: 34593656. PMCID: PMC8494954.
89. Ross JJ. 2017; Septic arthritis of native joints. Infect Dis Clin North Am. 31:203–18. DOI: 10.1016/j.idc.2017.01.001. PMID: 28366221.
90. García-Arias M, Balsa A, Mola EM. 2011; Septic arthritis. Best Pract Res Clin Rheumatol. 25:407–21. DOI: 10.1016/j.berh.2011.02.001. PMID: 22100289.
91. Horowitz DL, Katzap E, Horowitz S, Barilla-LaBarca ML. 2011; Approach to septic arthritis. Am Fam Physician. 84:653–60. PMID: 21916390.
92. Long B, Koyfman A, Gottlieb M. 2019; Evaluation and management of septic arthritis and its mimics in the emergency department. West J Emerg Med. 20:331–41. DOI: 10.5811/westjem.2018.10.40974. PMID: 30881554. PMCID: PMC6404712.
93. Elsissy JG, Liu JN, Wilton PJ, Nwachuku I, Gowd AK, Amin NH. 2020; Bacterial septic arthritis of the adult native knee joint: a review. JBJS Rev. 8:e0059. DOI: 10.2106/JBJS.RVW.19.00059. PMID: 31899698.
94. Stutz G, Gächter A. 2001; Diagnosis and stage-related therapy of joint infections. Unfallchirurg. 104:682–6. German. DOI: 10.1007/s001130170068. PMID: 11569148.
95. Balato G, de Matteo V, Ascione T, de Giovanni R, Marano E, Rizzo M, et al. 2021; Management of septic arthritis of the hip joint in adults. A systematic review of the literature. BMC Musculoskelet Disord. 22(Suppl 2):1006. DOI: 10.1186/s12891-021-04843-z. PMID: 34856966. PMCID: PMC8641144. PMID: ecbc0dbf2caf41a7a380af2e17e59898.
96. Jiang JJ, Piponov HI, Mass DP, Angeles JG, Shi LL. 2017; Septic arthritis of the shoulder: a comparison of treatment methods. J Am Acad Orthop Surg. 25:e175–84. DOI: 10.5435/JAAOS-D-16-00103. PMID: 28665804.
97. Movassaghi K, Wakefield C, Bohl DD, Lee S, Lin J, Holmes GB Jr, et al. 2019; Septic arthritis of the native ankle. JBJS Rev. 7:e6. DOI: 10.2106/JBJS.RVW.18.00080. PMID: 30889008.
98. Lener S, Hartmann S, Barbagallo GMV, Certo F, Thomé C, Tschugg A. 2018; Management of spinal infection: a review of the literature. Acta Neurochir (Wien). 160:487–96. DOI: 10.1007/s00701-018-3467-2. PMID: 29356895. PMCID: PMC5807463.
99. Duarte RM, Vaccaro AR. 2013; Spinal infection: state of the art and management algorithm. Eur Spine J. 22:2787–99. DOI: 10.1007/s00586-013-2850-1. PMID: 23756630. PMCID: PMC3843785.
100. Gouliouris T, Aliyu SH, Brown NM. 2010; Spondylodiscitis: update on diagnosis and management. J Antimicrob Chemother. 65 Suppl 3:iii11–24. DOI: 10.1093/jac/dkq303. PMID: 20876624.
101. Choi EJ, Kim SY, Kim HG, Shon HS, Kim TK, Kim KH. 2017; Percutaneous endoscopic debridement and drainage with four different approach methods for the treatment of spinal infection. Pain Physician. 20:E933–40. DOI: 10.36076/ppj.20.5.E933. PMID: 28934797.
102. Lee KY. 2014; Comparison of pyogenic spondylitis and tuberculous spondylitis. Asian Spine J. 8:216–23. DOI: 10.4184/asj.2014.8.2.216. PMID: 24761207. PMCID: PMC3996349.
103. Raff AB, Kroshinsky D. 2016; Cellulitis: a review. JAMA. 316:325–37. DOI: 10.1001/jama.2016.8825. PMID: 27434444.
104. Sullivan T, de Barra E. 2018; Diagnosis and management of cellulitis. Clin Med (Lond). 18:160–3. DOI: 10.7861/clinmedicine.18-2-160. PMID: 29626022. PMCID: PMC6303460.
105. Rrapi R, Chand S, Kroshinsky D. 2021; Cellulitis: a review of pathogenesis, diagnosis, and management. Med Clin North Am. 105:723–35. DOI: 10.1016/j.mcna.2021.04.009. PMID: 34059247.
106. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, et al. 2014; Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 59:e10–52. Erratum in: Clin Infect Dis 2015; 60: 1448. DOI: 10.1093/cid/civ113. PMCID: PMC4481567. PMID: 24973422.
107. Nauclér P, Huttner A, van Werkhoven CH, Singer M, Tattevin P, Einav S, et al. 2021; Impact of time to antibiotic therapy on clinical outcome in patients with bacterial infections in the emergency department: implications for antimicrobial stewardship. Clin Microbiol Infect. 27:175–81. DOI: 10.1016/j.cmi.2020.02.032. PMID: 32120032.
108. Lee MS, Oh JY, Kang CI, Kim ES, Park S, Rhee CK, et al. 2018; Guideline for antibiotic use in adults with community-acquired pneumonia. Infect Chemother. 50:160–98. DOI: 10.3947/ic.2018.50.2.160. PMID: 29968985. PMCID: PMC6031596.
109. Eisen DP, Hamilton E, Bodilsen J, Køster-Rasmussen R, Stockdale AJ, Miner J, et al. 2022; Longer than 2 hours to antibiotics is associated with doubling of mortality in a multinational community-acquired bacterial meningitis cohort. Sci Rep. 12:672. DOI: 10.1038/s41598-021-04349-7. PMID: 35027606. PMCID: PMC8758708. PMID: 9d1f8e79df114801b54226b2429797f4.
110. Nakatani S, Ohara T, Ashihara K, Izumi C, Iwanaga S, Eishi K, et al. 2019; JCS 2017 guideline on prevention and treatment of infective endocarditis. Circ J. 83:1767–809. DOI: 10.1253/circj.CJ-19-0549. PMID: 31281136.
111. Oshima T, Kodama Y, Takahashi W, Hayashi Y, Iwase S, Kurita T, et al. 2016; Empiric antibiotic therapy for severe sepsis and septic shock. Surg Infect (Larchmt). 17:210–6. DOI: 10.1089/sur.2014.096. PMID: 26630548.
112. Leekha S, Terrell CL, Edson RS. 2011; General principles of antimicrobial therapy. Mayo Clin Proc. 86:156–67. DOI: 10.4065/mcp.2010.0639. PMID: 21282489. PMCID: PMC3031442.
113. NHS Greater Glasgow and Clyde. Infection management guidelines empirical antibiotic therapy in adults. [Internet]. NHS Greater Glasgow and Clyde: Glasgow. Available at: https://handbook.ggcmedicines.org.uk/media/1133/2021-infection-management-poster.pdf.
114. NHS Grampian Antimicrobial Management Team. Empirical antimicrobial therapy prescribing guidance for adults. Version 6. [Internet]. NHS Grampian Antimicrobial Management Team: Aberdeen. Available at: https://www.nhsgrampian.org/globalassets/foidocument/foi-public-documents1---all-documents/IMG_EmpAposter.pdf.
115. Beveridge TJ. 2001; Use of the gram stain in microbiology. Biotech Histochem. 76:111–8. DOI: 10.1080/bih.76.3.111.118. PMID: 11475313.
116. Popescu A, Doyle RJ. 1996; The Gram stain after more than a century. Biotech Histochem. 71:145–51. DOI: 10.3109/10520299609117151. PMID: 8724440.
117. Coico R. 2005; Gram staining. Curr Protoc Microbiol. Appendix 3: Appendix 3C. DOI: 10.1002/9780471729259.mca03cs00. PMID: 18770544.
118. Sarkar P, Yarlagadda V, Ghosh C, Haldar J. 2017; A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. Medchemcomm. 8:516–33. DOI: 10.1039/C6MD00585C. PMID: 30108769. PMCID: PMC6072328.
119. Garnacho-Montero J, Escoresca-Ortega A, Fernández-Delgado E. 2015; Antibiotic de-escalation in the ICU: how is it best done? Curr Opin Infect Dis. 28:193–8. DOI: 10.1097/QCO.0000000000000141. PMID: 25692272.
120. De Waele JJ, Schouten J, Beovic B, Tabah A, Leone M. 2020; Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care: no simple answers to simple questions-a viewpoint of experts. Intensive Care Med. 46:236–44. DOI: 10.1007/s00134-019-05871-z. PMID: 32025778. PMCID: PMC7224113.
121. Kowalska-Krochmal B, Dudek-Wicher R. 2021; The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens. 10:165. DOI: 10.3390/pathogens10020165. PMID: 33557078. PMCID: PMC7913839. PMID: efce00235a094f04b0ddc8b179fbd79d.
122. Patel K, Bunachita S, Agarwal AA, Bhamidipati A, Patel UK. 2021; A comprehensive overview of antibiotic selection and the factors affecting it. Cureus. 13:e13925. DOI: 10.7759/cureus.13925. PMID: 33868859. PMCID: PMC8049037.
123. Pankey GA, Sabath LD. 2004; Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis. 38:864–70. DOI: 10.1086/381972. PMID: 14999632.
124. World Health Organization. Critically important antimicrobials for human medicine [Internet]. 6th ed.World Health Organization;Geneva: Available at: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf.
125. Bush K, Bradford PA. 2016; β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 6:a025247. DOI: 10.1101/cshperspect.a025247. PMID: 27329032. PMCID: PMC4968164.
126. Roberts JA, Norris R, Paterson DL, Martin JH. 2012; Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol. 73:27–36. DOI: 10.1111/j.1365-2125.2011.04080.x. PMID: 21831196. PMCID: PMC3248253.
127. Mabilat C, Gros MF, Nicolau D, Mouton JW, Textoris J, Roberts JA, et al. 2020; Diagnostic and medical needs for therapeutic drug monitoring of antibiotics. Eur J Clin Microbiol Infect Dis. 39:791–7. DOI: 10.1007/s10096-019-03769-8. PMID: 31828686. PMCID: PMC7182631.
128. Wong G, Sime FB, Lipman J, Roberts JA. 2014; How do we use therapeutic drug monitoring to improve outcomes from severe infections in critically ill patients? BMC Infect Dis. 14:288. DOI: 10.1186/1471-2334-14-288. PMID: 25430961. PMCID: PMC4289211.
129. Therapeutic Drug Monitoring (TDM) protocol for adult: vancomycin and aminoglycosides [Internet]. Saudi Arabia Ministry of Health;Riyadh: Available at: https://www.moh.gov.sa/Ministry/MediaCenter/Publications/Documents/Protocol-002.pdf.
130. Wang N, Luo J, Deng F, Huang Y, Zhou H. 2022; Antibiotic combination therapy: a strategy to overcome bacterial resistance to aminoglycoside antibiotics. Front Pharmacol. 13:839808. DOI: 10.3389/fphar.2022.839808. PMID: 35281905. PMCID: PMC8905495. PMID: 2e2eea0ba103421e9e4aee55c611e515.
131. Abdul-Aziz MH, Alffenaar JC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, et al. 2020; Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med. 46:1127–53. DOI: 10.1007/s00134-020-06050-1. PMID: 32383061. PMCID: PMC7223855.
132. Shrayteh ZM, Rahal MK, Malaeb DN. 2014; Practice of switch from intravenous to oral antibiotics. Springerplus. 3:717. DOI: 10.1186/2193-1801-3-717. PMID: 25674457. PMCID: PMC4320166.
133. Cyriac JM, James E. 2014; Switch over from intravenous to oral therapy: a concise overview. J Pharmacol Pharmacother. 5:83–7. DOI: 10.4103/0976-500X.130042. PMID: 24799810. PMCID: PMC4008927.
134. Pletz MW, Hagel S, Forstner C. 2017; Who benefits from antimicrobial combination therapy? Lancet Infect Dis. 17:677–8. DOI: 10.1016/S1473-3099(17)30233-5. PMID: 28442294.
135. Tejaswini YS, Challa SR, Nalla KS, Gadde RS, Pavani AL, Neerisha V. 2018; Practice of intravenous to oral conversion of antibiotics and its influence on length of stay at a tertiary care hospital: a prospective study. J Clin Diagn Res. 12:FC01–4. DOI: 10.7860/JCDR/2018/31647.11246. PMID: 72498e836be9441a98c4fd24051b6c94.
136. Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z. 2015; Extended spectrum beta-lactamases: definition, classification and epidemiology. Curr Issues Mol Biol. 17:11–21. DOI: 10.21775/cimb.017.011. PMID: 24821872.
137. Rudresh SM, Nagarathnamma T. 2011; Extended spectrum β-lactamase producing Enterobacteriaceae & antibiotic co-resistance. Indian J Med Res. 133:116–8. PMID: 21321429. PMCID: PMC3100140.
138. Dhillon RH, Clark J. 2012; ESBLs: a clear and present danger? Crit Care Res Pract. 2012:625170. DOI: 10.1155/2012/625170. PMID: 21766013. PMCID: PMC3135063.
139. Bajpai T, Pandey M, Varma M, Bhatambare GS. 2017; Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J Med. 7:12–6. DOI: 10.4103/2231-0770.197508. PMID: 28182026. PMCID: PMC5255976.
140. Saudagar PS, Survase SA, Singhal RS. 2008; Clavulanic acid: a review. Biotechnol Adv. 26:335–51. DOI: 10.1016/j.biotechadv.2008.03.002. PMID: 18450406.
141. Akova M. 2008; Sulbactam-containing beta-lactamase inhibitor combinations. Clin Microbiol Infect. 14 Suppl 1:185–8. Erratum in: Clin Microbiol Infect 2008; 14 Suppl 5: 21-4. DOI: 10.1111/j.1469-0691.2007.01847.x. PMID: 18154545.
142. López Montesinos I, Montero M, Sorlí L, Horcajada JP. 2021; Ceftolozane-tazobactam: when, how and why using it? Rev Esp Quimioter. 34(Suppl 1):35–7. DOI: 10.37201/req/s01.10.2021. PMID: 34598422. PMCID: PMC8682999.
143. Rodgers P, Kamat S, Adhav C. 2022; Ceftazidime-avibactam plus metronidazole vs. meropenem in complicated intra-abdominal infections: Indian subset from RECLAIM. J Infect Dev Ctries. 16:305–13. DOI: 10.3855/jidc.14912. PMID: 35298426.
144. Tanouchi Y, Pai A, Buchler NE, You L. 2012; Programming stress-induced altruistic death in engineered bacteria. Mol Syst Biol. 8:626. DOI: 10.1038/msb.2012.57. PMID: 23169002. PMCID: PMC3531911.
145. Tängdén T. 2014; Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Ups J Med Sci. 119:149–53. DOI: 10.3109/03009734.2014.899279. PMID: 24666223. PMCID: PMC4034552.
146. Marshall WF, Blair JE. 1999; The cephalosporins. Mayo Clin Proc. 74:187–95. DOI: 10.4065/74.2.187. PMID: 10069359.
147. Barbaud A, Weinborn M, Garvey LH, Testi S, Kvedariene V, Bavbek S, et al. 2020; Intradermal tests with drugs: an approach to standardization. Front Med (Lausanne). 7:156. DOI: 10.3389/fmed.2020.00156. PMID: 32500075. PMCID: PMC7243670. PMID: 3772a04025d24181bbfdcb013df0ef1a.
148. Lee SH, Park HW, Kim SH, Chang YS, Kim SS, Cho SH, et al. 2010; The current practice of skin testing for antibiotics in Korean hospitals. Korean J Intern Med. 25:207–12. DOI: 10.3904/kjim.2010.25.2.207. PMID: 20526396. PMCID: PMC2880696.
149. Shenoy ES, Macy E, Rowe T, Blumenthal KG. 2019; Evaluation and management of penicillin allergy: a review. JAMA. 321:188–99. DOI: 10.1001/jama.2018.19283. PMID: 30644987.
150. Kim EJ, Hwang EJ, Yoo YM, Kim KH. 2022; Prevention, diagnosis, and treatment of opioid use disorder under the supervision of opioid stewardship programs: it's time to act now. Korean J Pain. 35:361–82. DOI: 10.3344/kjp.2022.35.4.361. PMID: 36175336. PMCID: PMC9530691.
151. Magiorakos AP, inivasan A Sr, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. 2012; Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 18:268–81. DOI: 10.1111/j.1469-0691.2011.03570.x. PMID: 21793988.
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr