Anesth Pain Med.  2022 Jul;17(3):304-311. 10.17085/apm.21104.

Influence of anesthesia type on post-reperfusion syndrome during liver transplantation: a single-center retrospective study

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Korea
  • 2Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
  • 3Department of Surgery, Seoul National University College of Medicine, Seoul, Korea

Abstract

Background
Post-reperfusion syndrome (PRS) results in sudden hemodynamic instability following graft reperfusion. Although PRS is known to influence outcomes following liver transplantation, little is known regarding the effects of anesthetics on PRS. This study investigated the association between the type of anesthetic agent and PRS in liver transplantation. Methods: This single-center retrospective cohort study included patients who underwent liver transplantation between June 2016 and December 2019. Patients were divided into sevoflurane and propofol groups according to the anesthetic agent used. Stabilized inverse probability of treatment weighting (IPTW) analysis was performed to investigate the association between PRS identified based on blood pressure recordings and the type of anesthesia. Associations between the anesthetic agent and the duration of hypotension as well as early postoperative outcomes were also investigated. Results: Data were analyzed for 398 patients, 304 (76.4%) and 94 (23.6%) of whom were anesthetized with propofol and sevoflurane, respectively. PRS developed in 40.7% of the 398 patients. Following stabilized IPTW analysis, the association with PRS was lower in the sevoflurane group than in the propofol group (odds ratio, 0.47; P = 0.018). However, there was no association between the type of anesthetic used and early postoperative outcomes. Conclusions: The association of PRS was lower in the sevoflurane group than in the propofol group. However, there was no association between the type of anesthetic and the early postoperative outcomes. Further studies are required to determine the optimal anesthetic for liver transplantation.

Keyword

Liver transplantation; Propofol; Reperfusion; Sevoflurane

Figure

  • Fig. 1. Flow diagram of this study.

  • Fig. 2. Odds ratios between the groups for primary and secondary outcomes. CI: confidence interval. *P value of less than 0.05.


Reference

1. Manning MW, Kumar PA, Maheshwari K, Arora H. Post-reperfusion syndrome in liver transplantation-an overview. J Cardiothorac Vasc Anesth. 2020; 34:501–11.
Article
2. Siniscalchi A, Gamberini L, Laici C, Bardi T, Ercolani G, Lorenzini L, et al. Post reperfusion syndrome during liver transplantation: from pathophysiology to therapy and preventive strategies. World J Gastroenterol. 2016; 22:1551–69.
Article
3. Chung IS, Kim HY, Shin YH, Ko JS, Gwak MS, Sim WS, et al. Incidence and predictors of post-reperfusion syndrome in living donor liver transplantation. Clin Transplant. 2012; 26:539–43.
Article
4. Paugam-Burtz C, Kavafyan J, Merckx P, Dahmani S, Sommacale D, Ramsay M, et al. Postreperfusion syndrome during liver transplantation for cirrhosis: outcome and predictors. Liver Transpl. 2009; 15:522–9.
Article
5. Iaizzo PA. Handbook of cardiac anatomy, physiology, and devices. Totowa, Humana Press. 2005, p 171-80.
6. Lee J, Yoo YJ, Lee JM, Park YJ, Ryu HG. Sevoflurane versus desflurane on the incidence of postreperfusion syndrome during living donor liver transplantation: a randomized controlled trial. Transplantation. 2016; 100:600–6.
7. Wu ZF, Lin WL, Lee MS, Hung NK, Huang YS, Chen TW, et al. Propofol vs desflurane on the cytokine, matrix metalloproteinase-9, and heme oxygenase-1 response during living donor liver transplantation: a pilot study. Medicine (Baltimore). 2019; 98:e18244.
8. Gajate Martín L, González C, Ruiz Torres I, Fernández Martín C, Martín Grande A, Elías Martín E, et al. Effects of the hypnotic agent on primary graft dysfunction after liver transplantation. Transplant Proc. 2016; 48:3307–11.
Article
9. Mangus RS, Kinsella SB, Farar DT, Fridell JA, Woolf LT, Kubal CA. Impact of volatile anesthetic agents on early clinical outcomes in liver transplantation. Transplant Proc. 2018; 50:1372–7.
Article
10. Smith I, White PF, Nathanson M, Gouldson R. Propofol. An update on its clinical use. Anesthesiology. 1994; 81:1005–43.
11. Hays SR. Inhalation anesthetic agents: clinical effects and uses. Waltham, UptoDate;2020.
12. Lee HC, Jung CW. Vital Recorder-a free research tool for automatic recording of high-resolution time-synchronised physiological data from multiple anaesthesia devices. Sci Rep. 2018; 8:1527.
Article
13. Angeli P, Ginès P, Wong F, Bernardi M, Boyer TD, Gerbes A, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatol 2015; 62: 968-74. Erratum in: J Hepatol. 2015; 63:290.
Article
14. Olthoff KM, Kulik L, Samstein B, Kaminski M, Abecassis M, Emond J, et al. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transpl. 2010; 16:943–9.
Article
15. Schulte PJ, Mascha EJ. Propensity score methods: theory and practice for anesthesia research. Anesth Analg. 2018; 127:1074–84.
16. Lumley T. Analysis of complex survey samples. J Stat Softw. 2004; 9:1–19.
Article
17. Webster NR, Bellamy MC, Lodge JP, Sadek SA. Haemodynamics of liver reperfusion: comparison of two anaesthetic techniques. Br J Anaesth. 1994; 72:418–21.
Article
18. Li H, Weng Y, Yuan S, Liu W, Yu H, Yu W. Effect of sevoflurane and propofol on acute kidney injury in pediatric living donor liver transplantation. Ann Transl Med. 2019; 7:340.
Article
19. Shin S, Joo DJ, Kim MS, Bae MI, Heo E, Lee JS, et al. Propofol intravenous anaesthesia with desflurane compared with desflurane alone on postoperative liver function after living-donor liver transplantation: a randomised controlled trial. Eur J Anaesthesiol. 2019; 36:656–66.
20. Lu CH, Yeh CC, Huang YS, Lee MS, Hsieh CB, Cherng CH, et al. Hemodynamic and biochemical changes in liver transplantation: a retrospective comparison of desflurane and total intravenous anesthesia by target-controlled infusion under auditory evoked potential guide. Acta Anaesthesiol Taiwan. 2014; 52:6–12.
Article
21. Ebert TJ, Muzi M, Berens R, Goff D, Kampine JP. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology. 1992; 76:725–33.
Article
22. Robinson BJ, Ebert TJ, O'Brien TJ, Colinco MD, Muzi M. Mechanisms whereby propofol mediates peripheral vasodilation in humans. Sympathoinhibition or direct vascular relaxation? Anesthesiology. 1997; 86:64–72.
23. Kanaya N, Hirata N, Kurosawa S, Nakayama M, Namiki A. Differential effects of propofol and sevoflurane on heart rate variability. Anesthesiology. 2003; 98:34–40.
Article
24. Takizawa D, Sato E, Hiraoka H, Tomioka A, Yamamoto K, Horiuchi R, et al. Changes in apparent systemic clearance of propofol during transplantation of living related donor liver. Br J Anaesth. 2005; 95:643–7.
Article
25. Carles M, Dellamonica J, Roux J, Lena D, Levraut J, Pittet JF, et al. Sevoflurane but not propofol increases interstitial glycolysis metabolites availability during tourniquet-induced ischaemia-reperfusion. Br J Anaesth. 2008; 100:29–35.
Article
26. Novalija E, Kevin LG, Eells JT, Henry MM, Stowe DF. Anesthetic preconditioning improves adenosine triphosphate synthesis and reduces reactive oxygen species formation in mitochondria after ischemia by a redox dependent mechanism. Anesthesiology. 2003; 98:1155–63.
Article
27. Royse CF, Liew DF, Wright CE, Royse AG, Angus JA. Persistent depression of contractility and vasodilation with propofol but not with sevoflurane or desflurane in rabbits. Anesthesiology. 2008; 108:87–93.
Article
28. Mueller AR, Platz KP, Kremer B. Early postoperative complications following liver transplantation. Best Pract Res Clin Gastroenterol. 2004; 18:881–900.
Article
29. Hilmi I, Horton CN, Planinsic RM, Sakai T, Nicolau-Raducu R, Damian D, et al. The impact of postreperfusion syndrome on short-term patient and liver allograft outcome in patients undergoing orthotopic liver transplantation. Liver Transpl. 2008; 14:504–8.
Article
30. Xu S, Ross C, Raebel MA, Shetterly S, Blanchette C, Smith D. Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals. Value Health. 2010; 13:273–7.
Article
Full Text Links
  • APM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr