Acute Crit Care.  2022 May;37(2):168-176. 10.4266/acc.2021.00920.

Comparison of critically ill COVID-19 and influenza patients with acute respiratory failure

Affiliations
  • 1Division of Intensive Care Medicine, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey

Abstract

Background
Coronavirus disease 2019 (COVID-19) is one of the biggest pandemic causing acute respiratory failure (ARF) in the last century. Seasonal influenza carries high mortality, as well. The aim of this study was to compare features and outcomes of critically-ill COVID-19 and influenza patients with ARF.
Methods
Patients with COVID-19 and influenza admitted to intensive care unit with ARF were retrospectively analyzed.
Results
Fifty-four COVID-19 and 55 influenza patients with ARF were studied. Patients with COVID-19 had 32% of hospital mortality, while those with influenza had 47% (P=0.09). Patients with influenza had higher Eastern Cooperative Oncology Group, Clinical Frailty Scale, Acute Physiology and Chronic Health Evaluation II and admission Sequential Organ Failure Assessment (SOFA) scores than COVID-19 patients (P<0.01). Secondary bacterial infection, admission acute kidney injury, procalcitonin level above 0.2 ng/ml were the independent factors distinguishing influenza from COVID-19 while prone positioning differentiated COVID-19 from influenza. Invasive mechanical ventilation (odds ratio [OR], 42.16; 95% confidence interval [CI], 9.45–187.97), admission SOFA score more than 4 (OR, 5.92; 95% CI, 1.85–18.92), malignancy (OR, 4.95; 95% CI, 1.13–21.60), and age more than 65 years (OR, 3.31; 95% CI, 0.99–11.03) were found to be independent risk factors for hospital mortality.
Conclusions
There were few differences in clinical features of critically-ill COVID-19 and influenza patients. Influenza cases had worse performance status and disease severity. There was no significant difference in hospital mortality rates between COVID-19 and influenza patients.

Keyword

coronavirus; acute respiratory distress syndrome; intensive care; mortality; outcome; viral pneumonia

Figure

  • Figure 1. Independent parameters differentiating viral agents are schematized by forest plot. Independent parameters differentiating viral agents are schematized by forest plot. Adjusted for the history of cardiac disease, Clinical Frailty Scale, Acute Physiology and Chronic Health Evaluation (APACHE) II score, Sequential Organ Failure Assessment (SOFA) score, presence of septic shock, invasive mechanical ventilation, admission neutrophil/lymphocyte ratio, and admission international normalized ratio. Except prone positioning, admission procalcitonin (PCT), acute kidney injury (AKI) and secondary bacterial infection discriminate influenza patients from coronavirus disease 2019 (COVID-19). OR: odds ratio; Cl: confidence interval.

  • Figure 2. Kaplan-Meier survival curve comparing patients with Coronavirus disease 2019 (COVID-19; dotted line) and influenza (straight line) revealing no difference in survival between two groups (log-rank P=0.81).


Reference

1. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020; 26:729–34.
Article
2. Halacli B, Kaya A, Topeli A. Critically-ill COVID-19 patient. Turk J Med Sci. 2020; 50(SI-1):585–91.
3. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323:1239–42.
Article
4. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8:475–81.
Article
5. Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern Med. 2020; 180:1345–55.
6. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323:2052–9.
Article
7. Ortiz JR, Neuzil KM, Shay DK, Rue TC, Neradilek MB, Zhou H, et al. The burden of influenza-associated critical illness hospitalizations. Crit Care Med. 2014; 42:2325–32.
Article
8. Arabi YM, Fowler R, Hayden FG. Critical care management of adults with community-acquired severe respiratory viral infection. Intensive Care Med. 2020; 46:315–28.
Article
9. Ortac Ersoy E, Er B, Ciftci F, Gulleroglu A, Suner K, Arpinar B, et al. Outcome of patients admitted to intensive care units due to influenza-related severe acute respiratory illness in 2017-2018 flu season: a multicenter study from Turkey. Respiration. 2020; 99:954–60.
Article
10. Tang X, Du RH, Wang R, Cao TZ, Guan LL, Yang CQ, et al. Comparison of hospitalized patients with ARDS caused by COVID-19 and H1N1. Chest. 2020; 158:195–205.
Article
11. Zayet S, Kadiane-Oussou NJ, Lepiller Q, Zahra H, Royer PY, Toko L, et al. Clinical features of COVID-19 and influenza: a comparative study on Nord Franche-Comte cluster. Microbes Infect. 2020; 22:481–8.
Article
12. Piroth L, Cottenet J, Mariet AS, Bonniaud P, Blot M, Tubert-Bitter P, et al. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Lancet Respir Med. 2021; 9:251–9.
Article
13. Schnell D, Gits-Muselli M, Canet E, Lemiale V, Schlemmer B, Simon F, et al. Burden of respiratory viruses in patients with acute respiratory failure. J Med Virol. 2014; 86:1198–202.
Article
14. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315:801–10.
Article
15. KDIGO. Clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012; 2(Suppl 1):1–138.
16. Martín-Loeches I, Sanchez-Corral A, Diaz E, Granada RM, Zaragoza R, Villavicencio C, et al. Community-acquired respiratory coinfection in critically ill patients with pandemic 2009 influenza A(H1N1) virus. Chest. 2011; 139:555–62.
Article
17. MacIntyre CR, Chughtai AA, Barnes M, Ridda I, Seale H, Toms R, et al. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. BMC Infect Dis. 2018; 18:637.
Article
18. Zhao Z, Chen A, Hou W, Graham JM, Li H, Richman PS, et al. Prediction model and risk scores of ICU admission and mortality in COVID-19. PLoS One. 2020; 15:e0236618.
Article
19. Meng FS, Su L, Tang YQ, Wen Q, Liu YS, Liu ZF. Serum procalcitonin at the time of admission to the ICU as a predictor of short-term mortality. Clin Biochem. 2009; 42:1025–31.
Article
20. Demirjian SG, Raina R, Bhimraj A, Navaneethan SD, Gordon SM, Schreiber MJ Jr, et al. 2009 influenza A infection and acute kidney injury: incidence, risk factors, and complications. Am J Nephrol. 2011; 34:1–8.
Article
21. Bagshaw SM, Sood MM, Long J, Fowler RA, Adhikari NK; Canadian Critical Care Trials Group H1N1 Collaborative. Acute kidney injury among critically ill patients with pandemic H1N1 influenza A in Canada: cohort study. BMC Nephrol. 2013; 14:123.
Article
22. Beumer MC, Koch RM, van Beuningen D, OudeLashof AM, van de Veerdonk FL, Kolwijck E, et al. Influenza virus and factors that are associated with ICU admission, pulmonary co-infections and ICU mortality. J Crit Care. 2019; 50:59–65.
Article
23. Pei G, Zhang Z, Peng J, Liu L, Zhang C, Yu C, et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J Am Soc Nephrol. 2020; 31:1157–65.
Article
24. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395:497–506.
Article
25. Valenza F, Guglielmi M, Maffioletti M, Tedesco C, Maccagni P, Fossali T, et al. Prone position delays the progression of ventilator-induced lung injury in rats: does lung strain distribution play a role? Crit Care Med. 2005; 33:361–7.
Article
26. Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017; 195:1253–63.
Article
27. Elharrar X, Trigui Y, Dols AM, Touchon F, Martinez S, Prud’homme E, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA. 2020; 323:2336–8.
Article
28. Weatherald J, Solverson K, Zuege DJ, Loroff N, Fiest KM, Parhar KK. Awake prone positioning for COVID-19 hypoxemic respiratory failure: a rapid review. J Crit Care. 2021; 61:63–70.
Article
29. Halaçlı B, Hancı P, Ortaç Ersoy E, Öcal S, Tanrıöver MD, Topeli A. Influenza or other respiratory viruses: does it matter as the cause of acute respiratory failure in the critically-ill patients? Tuberk Toraks. 2020; 68:388–98.
Article
30. Langford BJ, So M, Raybardhan S, Leung V, Westwood D, MacFadden DR, et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect. 2020; 26:1622–9.
Article
Full Text Links
  • ACC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr