Blood Res.  2022 Jun;57(2):117-128. 10.5045/br.2022.2021145.

Diffuse large B-cell lymphoma (DLBCL) is infiltrated with activated CD8+ T-cells despite immune checkpoint signaling

Affiliations
  • 1Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
  • 2Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
  • 3Division of Medical Oncology, University of Washington, Seattle, WA, USA
  • 4Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA

Abstract

Background
B-cell non-Hodgkin lymphomas (NHL) are hematologic malignancies that arise in the lymph node. Despite this, the malignant cells are not cleared by the immune cells present. The failure of anti-tumor immunity may be due to immune checkpoints such as the PD-1/PDL-1 axis, which can cause T-cell exhaustion. Unfortunately, unlike Hodgkin lymphoma, checkpoint blockade in NHL has shown limited efficacy.
Methods
We performed an extensive functional analysis of malignant and non-malignant lymph nodes using high dimensional flow cytometry. We compared follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), and lymph nodes harboring reactive hyperplasia (RH).
Results
We identified an expansion of CD8+PD1+ T-cells in the lymphomas relative to RH. Moreover, we demonstrate that these cells represent a mixture of activated and exhausted T-cells in FL. In contrast, these cells are nearly universally activated and functional in DLBCL. This is despite expression of counter-regulatory molecules such as PD-1, TIM-3, and CTLA-4, and the presence of regulatory T-cells.
Conclusion
These data may explain the failure of single-agent immune checkpoint inhibitors in the treatment of DLBCL. Accordingly, functional differences of CD8+ T-cells between FL and DLBCL may inform future therapeutic targeting strategies.

Keyword

Lymphoma; Immune microenvironment; Immune checkpoint inhibition

Figure

  • Fig. 1 Dimensional reduction of T-cells using UMAP algorithm. (A) U-MAP plot of T-cells generated from combined data from RH, FL, and DLBCL. Each color represents an identified population using the PhenoGraph algorithm. (B) Overlay of reactive hyperplasia (red) on to U-MAP plot. Numbers represent populations not present RH. (C–G) Heat maps showing expression of CD45RA, FoxP3, CXCR5, PD-1, and TIM-3. Histologies were FL (N=7), DLBCL (N=6), and RH (N=2). DLBCL subtypes included 4 GCB type, 1 ABC type, and one unknown.

  • Fig. 2 Populations enriched in each histology. (A) Tfh, (B) Treg, (C) NK cells, (D) CD4+ PD-1-, (E) CD4+ PD-1int, (F) CD4+ PD-1int TIM-3+, (G) CD8+ PD-1-, (H) CD8+ PD-1+, (I) CD8+ PD-1+ TIM-3+. Graphs represent a separate cohort of patients from Fig. 1 except panels F and I. Histologies for new cohort were RH (N=4), FL (N=16), DLBCL (N=20). P-values as indicated.

  • Fig. 3 Functional characterization of CD8+ cells. The percentage of (A) naïve/central memory (CM)/ effector memory (EM) T-cells by each histology and (B) by ex-pression of PD-1 and TIM-3 ex-pression. (C) Percent of total CD8+ T-cells that produce IFNγ . (D) IFNγ production by histology and memory subset. (E, F) Linear regression of CD8+ cells producing IFNγ and IL-2 versus the percentage of cells expressing PD-1. (G) IFNγ and (H) IL-2 production by CD8+ T-cells by expression of PD-1, TIM-3, and CTLA-4. Histologies were RH (N=2), FL (N=5), DLBCL (N=6). P-values as indicated.

  • Fig. 4 Cytotoxicity, cell cycling, and apoptosis in DLBCL. (A) The percentage of CD8+ T-cells lacking both granzyme B and perforin by PD-1 and TIM-3 expression (N=4). (B) The percentage of CD8+ T-cells that degranulate in response to PMA/ionomycin by PD-1, TIM-3, and CTLA-4 expression (N=4). (C) The percentage of CD8+ T-cells that are actively cycling by PD-1 and TIM-3 expression (N=4). (D) Percentage of CD8+ T-cells that are undergoing apoptosis by PD-1 and TIM-3 expression. Early apoptosis is defined as cleaved PARP+ viability dye-, and late apoptosis as cleaved PARP+ viability dye+ (N=4). P-values as indicated.


Reference

1. Dave SS, Wright G, Tan B, et al. 2004; Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 351:2159–69. DOI: 10.1056/NEJMoa041869. PMID: 15548776.
2. Alizadeh AA, Gentles AJ, Alencar AJ, et al. 2011; Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment. Blood. 118:1350–8. DOI: 10.1182/blood-2011-03-345272. PMID: 21670469. PMCID: PMC3152499.
Article
3. Rosenwald A, Wright G, Chan WC, et al. 2002; The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 346:1937–47. DOI: 10.1056/NEJMoa012914. PMID: 12075054.
Article
4. Lesokhin AM, Ansell SM, Armand P, et al. 2016; Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 34:2698–704. DOI: 10.1200/JCO.2015.65.9789. PMID: 27269947. PMCID: PMC5019749.
Article
5. Westin JR, Chu F, Zhang M, et al. 2014; Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 15:69–77. DOI: 10.1016/S1470-2045(13)70551-5. PMID: 24332512. PMCID: PMC3922714.
Article
6. Ding W, Laplant B, Witzig TE, et al. 2017; PD-1 blockade with pembrolizumab in relapsed low grade non-Hodgkin lymphoma. Blood (ASH Annual Meeting Abstracts). 130(Suppl):4055. DOI: 10.21019/pharmacotherapyfirst.nhl_overview.
7. Nastoupil LJ, Westin JR, Fowler NH, et al. 2017; Response rates with pembrolizumab in combination with rituximab in patients with relapsed follicular lymphoma: interim results of an on open-label, phase II study. J Clin Oncol (ASCO Annual Meeting Abstracts). 35(Suppl):7519. DOI: 10.1200/JCO.2017.35.15_suppl.7519.
Article
8. Younes A, Brody J, Carpio C, et al. 2019; Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non- Hodgkin lymphoma or chronic lymphocytic leukaemia: a phase 1/2a study. Lancet Haematol. 6:e67–78. DOI: 10.1016/S2352-3026(18)30217-5. PMID: 30642819.
9. Ansell SM, Minnema MC, Johnson P, et al. 2019; Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: a single-arm, phase II study. J Clin Oncol. 37:481–9. DOI: 10.1200/JCO.18.00766. PMID: 30620669. PMCID: PMC6528729.
Article
10. Amé-Thomas P, Hoeller S, Artchounin C, et al. 2015; CD10 delineates a subset of human IL-4 producing follicular helper T cells involved in the survival of follicular lymphoma B cells. Blood. 125:2381–5. DOI: 10.1182/blood-2015-02-625152. PMID: 25733581. PMCID: PMC4401349.
Article
11. Amé-Thomas P, Le Priol J, Yssel H, et al. 2012; Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells. Leukemia. 26:1053–63. DOI: 10.1038/leu.2011.301. PMID: 22015774. PMCID: PMC3428269.
Article
12. Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM. 2006; Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood. 107:3639–46. DOI: 10.1182/blood-2005-08-3376. PMID: 16403912. PMCID: PMC1895773.
Article
13. Mittal S, Marshall NA, Duncan L, Culligan DJ, Barker RN, Vickers MA. 2008; Local and systemic induction of CD4+CD25+ regulatory T-cell population by non-Hodgkin lymphoma. Blood. 111:5359–70. DOI: 10.1182/blood-2007-08-105395. PMID: 18305220.
Article
14. Myklebust JH, Irish JM, Brody J, et al. 2013; High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood. 121:1367–76. DOI: 10.1182/blood-2012-04-421826. PMID: 23297127. PMCID: PMC3578953.
Article
15. Gravelle P, Do C, Franchet C, et al. 2016; Impaired functional responses in follicular lymphoma CD8+TIM-3+ T lymphocytes following TCR engagement. Oncoimmunology. 5:e1224044. DOI: 10.1080/2162402X.2016.1224044. PMID: 27990323. PMCID: PMC5135226.
16. Yang ZZ, Grote DM, Ziesmer SC, et al. 2012; IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest. 122:1271–82. DOI: 10.1172/JCI59806. PMID: 22426209. PMCID: PMC3314462.
Article
17. Yang ZZ, Kim HJ, Villasboas JC, et al. 2017; Expression of LAG-3 defines exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma. Oncotarget. 8:61425–39. DOI: 10.18632/oncotarget.18251. PMID: 28977875. PMCID: PMC5617435.
Article
18. Josefsson SE, Huse K, Kolstad A, et al. 2018; T cells expressing checkpoint receptor TIGIT are enriched in follicular lymphoma tumors and characterized by reversible suppression of T-cell receptor signaling. Clin Cancer Res. 24:870–81. DOI: 10.1158/1078-0432.CCR-17-2337. PMID: 29217528. PMCID: PMC5815910.
Article
19. Yang ZZ, Grote DM, Xiu B, et al. 2014; TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin's lymphoma. Leukemia. 28:1872–84. DOI: 10.1038/leu.2014.84. PMID: 24569779. PMCID: PMC4145058.
Article
20. Cader FZ, Schackmann RCJ, Hu X, et al. 2018; Mass cytometry of Hodgkin lymphoma reveals a CD4+ regulatory T-cell-rich and exhausted T-effector microenvironment. Blood. 132:825–36. DOI: 10.1182/blood-2018-04-843714. PMID: 29880615. PMCID: PMC6107878.
Article
21. McInnes L, Healy J, Melville J. 2018. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv: 1802.03426. at https://arxiv.org/pdf/1802.03426.pdf. Accessed February 8, 2019.
22. Levine JH, Simonds EF, Bendall SC, et al. 2015; Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell. 162:184–97. DOI: 10.1016/j.cell.2015.05.047. PMID: 26095251. PMCID: PMC4508757.
Article
23. Wang R, Wan Q, Kozhaya L, Fujii H, Unutmaz D. 2008; Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression. PLoS One. 3:e2705. DOI: 10.1371/journal.pone.0002705. PMID: 18628982. PMCID: PMC2442191.
Article
24. McMahan RH, Golden-Mason L, Nishimura MI, et al. 2010; Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J Clin Invest. 120:4546–57. DOI: 10.1172/JCI43127. PMID: 21084749. PMCID: PMC2994339.
Article
25. Paiardini M, Cervasi B, Albrecht H, et al. 2005; Loss of CD127 expression defines an expansion of effector CD8+ T cells in HIV-infected individuals. J Immunol. 174:2900–9. DOI: 10.4049/jimmunol.174.5.2900. PMID: 15728501.
Article
26. Riches JC, Davies JK, McClanahan F, et al. 2013; T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 121:1612–21. DOI: 10.1182/blood-2012-09-457531. PMID: 23247726. PMCID: PMC3587324.
Article
27. Betts MR, Brenchley JM, Price DA, et al. 2003; Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods. 281:65–78. DOI: 10.1016/S0022-1759(03)00265-5. PMID: 14580882.
Article
28. Smith SD, Till BG, Shadman MS, et al. 2020; Pembrolizumab with R-CHOP in previously untreated diffuse large B-cell lymphoma: potential for biomarker driven therapy. Br J Haematol. 189:1119–26. DOI: 10.1111/bjh.16494. PMID: 32030732.
Article
29. Armand P, Janssens A, Gritti G, et al. 2021; Efficacy and safety results from CheckMate 140, a phase 2 study of nivolumab for relapsed/refractory follicular lymphoma. Blood. 137:637–45. DOI: 10.1182/blood.2019004753. PMID: 32870269. PMCID: PMC7869188.
Article
30. Nastoupil L, Westin JR, Fowler NH, et al. 2017; High complete response rates with pembrolizumab in combination with rituximab in patients with relapsed follicular lymphoma: results of an open- label, phase II study. Blood (ASH Annual Meeting Abstracts). 130(Suppl):414. DOI: 10.1002/hon.2437_108.
31. Roussel M, Le KS, Granier C, et al. 2021; Functional characterization of PD1+TIM3+ tumor-infiltrating T cells in DLBCL and effects of PD1 or TIM3 blockade. Blood Adv. 5:1816–29. DOI: 10.1182/bloodadvances.2020003080. PMID: 33787861. PMCID: PMC8045516.
Article
32. Ahn E, Araki K, Hashimoto M, et al. 2018; Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci U S A. 115:4749–54. DOI: 10.1073/pnas.1718217115. PMID: 29654146. PMCID: PMC5939075.
Article
33. Barber DL, Wherry EJ, Masopust D, et al. 2006; Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 439:682–7. DOI: 10.1038/nature04444. PMID: 16382236.
Article
34. Duraiswamy J, Ibegbu CC, Masopust D, et al. 2011; Phenotype, function, and gene expression profiles of programmed death-1(hi) CD8 T cells in healthy human adults. J Immunol. 186:4200–12. DOI: 10.4049/jimmunol.1001783. PMID: 21383243. PMCID: PMC3723805.
35. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. 2010; Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 207:2187–94. DOI: 10.1084/jem.20100643. PMID: 20819927. PMCID: PMC2947065.
Article
36. Utzschneider DT, Legat A, Fuertes Marraco SA, et al. 2013; T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat Immunol. 14:603–10. DOI: 10.1038/ni.2606. PMID: 23644506.
Article
37. Jin HT, Anderson AC, Tan WG, et al. 2010; Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A. 107:14733–8. DOI: 10.1073/pnas.1009731107. PMID: 20679213. PMCID: PMC2930455.
Article
38. Baitsch L, Baumgaertner P, Devêvre E, et al. 2011; Exhaustion of tumor- specific CD8+ T cells in metastases from melanoma patients. J Clin Invest. 121:2350–60. DOI: 10.1172/JCI46102. PMID: 21555851. PMCID: PMC3104769.
39. Wu X, Zhang H, Xing Q, et al. 2014; PD-1+ CD8+ T cells are exhausted in tumours and functional in draining lymph nodes of colorectal cancer patients. Br J Cancer. 111:1391–9. DOI: 10.1038/bjc.2014.416. PMID: 25093496. PMCID: PMC4183848.
Article
40. Kahan SM, Bakshi RK, Luther R, et al. 2017; IL-2 producing and non-producing effector CD8 T cells phenotypically and trans-criptionally coalesce to form memory subsets with similar protective properties. J Immunol. 198:212.
41. Yarchoan M, Albacker LA, Hopkins AC, et al. 2019; PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight. 4:e126908. DOI: 10.1172/jci.insight.126908. PMID: 30895946. PMCID: PMC6482991.
Article
42. Nijland M, Veenstra RN, Visser L, et al. 2017; HLA dependent immune escape mechanisms in B-cell lymphomas: implications for immune checkpoint inhibitor therapy? Oncoimmunology. 6:e1295202. DOI: 10.1080/2162402X.2017.1295202. PMID: 28507804. PMCID: PMC5414870. PMID: 5e3fc889fd1244a6b476b3504c80cfbe.
Article
43. Duhen T, Duhen R, Montler R, et al. 2018; Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun. 9:2724. DOI: 10.1038/s41467-018-05072-0. PMID: 30006565. PMCID: PMC6045647. PMID: 7f90edfb8d4e4077bb1febd57a7e1381.
Article
44. Ramsay AG, Clear AJ, Kelly G, et al. 2009; Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor micro-environment and immunotherapy. Blood. 114:4713–20. DOI: 10.1182/blood-2009-04-217687. PMID: 19786615. PMCID: PMC2780306.
Article
45. Ahearne MJ, Bhuller K, Hew R, Ibrahim H, Naresh K, Wagner SD. 2014; Expression of PD-1 (CD279) and FoxP3 in diffuse large B-cell lymphoma. Virchows Arch. 465:351–8. DOI: 10.1007/s00428-014-1615-5. PMID: 25011996.
Article
46. Kwon D, Kim S, Kim PJ, et al. 2016; Clinicopathological analysis of programmed cell death 1 and programmed cell death ligand 1 expression in the tumour microenvironments of diffuse large B cell lymphomas. Histopathology. 68:1079–89. DOI: 10.1111/his.12882. PMID: 26426431.
Article
47. Fang X, Xiu B, Yang Z, et al. 2017; The expression and clinical relevance of PD-1, PD-L1, and TP63 in patients with diffuse large B-cell lymphoma. Medicine (Baltimore). 96:e6398. DOI: 10.1097/MD.0000000000006398. PMID: 28403071. PMCID: PMC5403068.
Article
48. Josefsson SE, Beiske K, Blaker YN, et al. 2019; TIGIT and PD-1 mark intratumoral T cells with reduced effector function in B-cell non-Hodgkin lymphoma. Cancer Immunol Res. 7:355–62. DOI: 10.1158/2326-6066.CIR-18-0351. PMID: 30659053. PMCID: PMC6636339.
Article
49. Olsen I, Sollid LM. 2013; Pitfalls in determining the cytokine profile of human T cells. J Immunol Methods. 390:106–12. DOI: 10.1016/j.jim.2013.01.015. PMID: 23416458.
Article
Full Text Links
  • BR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr