Int J Thyroidol.  2022 May;15(1):1-16. 10.11106/ijt.2022.15.1.1.

Evaluation and Management of Bone Health in Patients with Thyroid Diseases: a Position Statement from the Korean Thyroid Association

Affiliations
  • 1Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
  • 2Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
  • 3Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
  • 4Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
  • 5Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
  • 6Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
  • 7Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea

Abstract

Thyroid hormones have an important physiological role in maintaining adult bone structure and strength. Therefore, thyroid dysfunction is inevitably associated with various degrees of skeletal consequences. Endogenous overt hyperthyroidism is an established cause of high bone turnover with accelerated bone loss, resulting in osteoporosis and an increased risk of fractures. Hyperthyroidism induced by thyroid stimulating hormone suppression therapy in patients with differentiated thyroid cancer also has emerged as a contributing factor to osteoporosis and fragility fractures. While, there is lack of evidence that hypothyroidism negatively affects bone health. Although there is growing clinical evidence of the importance of bone health in hyperthyroidism, clinical guidelines on how to evaluate and manage bone health in these diseases have not yet been published worldwide. The Task Force from the Korean Thyroid Association Committee of Clinical Practice Guideline has developed this position statement for the evaluation and management of bone health in patients with thyroid diseases, particularly focused on endogenous hyperthyroidism and thyroid stimulating hormone suppression therapyassociated hyperthyroidism in patients with differentiated thyroid cancer.

Keyword

Hyperthyroidism; Differentiated thyroid cancer; Thyroid stimulating hormone; Osteoporosis; Fracture

Figure

  • Fig. 1 Evaluation and management of bone health in (A) women and (B) men with hyperthyroidism. 1Ca/D+Osteoporosis Tx, Treatment for osteoporosis is needed in combination with calcium and vitamin D replacement. 2Ca/D±Osteoporosis Tx, Treatment for osteoporosis can be considered in combination with calcium and vitamin D replacement. Anti-osteoporosis treatment includes anti-resorptive agents (e.g., bisphosphonate) and anabolic agents. Certain types of bisphosphonates (i.e., ibandronate) are not available in men. BMD: bone mineral density, Ca/D: calcium and vitamin D, DXA: dual-energy X-ray absorptiometry, Tx: therapy

  • Fig. 2 Evaluation and management of bone health in (A) women and (B) men with differentiated thyroid cancer under TSH suppressive therapy. 1The high-risk group for osteoporosis and fragility fractures includes a previous history of fragility fractures, more than 1 year of amenorrhea in women, having other medical diseases or taking medications that cause osteoporosis. 2Ca/D+Osteoporosis Tx, Treatment for osteoporosis is needed in combination with calcium and vitamin D replacement. 3Ca/D±Osteoporosis Tx, Treatment for osteoporosis can be considered in combination with calcium and vitamin D replacement. Anti-osteoporosis treatment includes anti-resorptive agents (e.g., bisphosphonate) and anabolic agents. Certain types of bisphosphonates (i.e., ibandronate) are not available in men. BMD: bone mineral density, Ca/D: calcium and vitamin D, DTC: differentiated thyroid cancer, DXA: dual-energy X-ray absorptiometry, TSH: thyroid stimulating hormone, Tx: therapy


Cited by  1 articles

Evaluation and Management of Bone Health in Patients with Thyroid Diseases: A Position Statement of the Korean Thyroid Association
A Ram Hong, Ho-Cheol Kang
Endocrinol Metab. 2023;38(2):175-189.    doi: 10.3803/EnM.2023.1701.


Reference

References

1. Wexler JA, Sharretts J. 2007; Thyroid and bone. Endocrinol Metab Clin North Am. 36(3):673–705. viDOI: 10.1016/j.ecl.2007.04.005. PMID: 17673124.
Article
2. Mundy GR, Shapiro JL, Bandelin JG, Canalis EM, Raisz LG. 1976; Direct stimulation of bone resorption by thyroid hormones. J Clin Invest. 58(3):529–34. DOI: 10.1172/JCI108497. PMID: 182721. PMCID: PMC333209.
Article
3. Kanatani M, Sugimoto T, Sowa H, Kobayashi T, Kanzawa M, Chihara K. 2004; Thyroid hormone stimulates osteoclast differentiation by a mechanism independent of RANKL-RANK interaction. J Cell Physiol. 201(1):17–25. DOI: 10.1002/jcp.20041. PMID: 15281085.
Article
4. Bassett JH, Williams GR. 2016; Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev. 37(2):135–87. DOI: 10.1210/er.2015-1106. PMID: 26862888. PMCID: PMC4823381.
Article
5. Vestergaard P, Mosekilde L. 2002; Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid. 12(5):411–9. DOI: 10.1089/105072502760043503. PMID: 12097203.
Article
6. Abrahamsen B, Jorgensen HL, Laulund AS, Nybo M, Bauer DC, Brix TH, et al. 2015; The excess risk of major osteoporotic fractures in hypothyroidism is driven by cumulative hyperthyroid as opposed to hypothyroid time: an observational register-based time-resolved cohort analysis. J Bone Miner Res. 30(5):898–905. DOI: 10.1002/jbmr.2416. PMID: 25431028.
Article
7. Ko YJ, Kim JY, Lee J, Song HJ, Kim JY, Choi NK, et al. 2014; Levothyroxine dose and fracture risk according to the osteoporosis status in elderly women. J Prev Med Public Health. 47(1):36–46. DOI: 10.3961/jpmph.2014.47.1.36. PMID: 24570805. PMCID: PMC3930806.
Article
8. Uzzan B, Campos J, Cucherat M, Nony P, Boissel JP, Perret GY. 1996; Effects on bone mass of long term treatment with thyroid hormones: a meta-analysis. J Clin Endocrinol Metab. 81(12):4278–89. DOI: 10.1210/jcem.81.12.8954028. PMID: 8954028.
Article
9. Ross DS. 1994; Hyperthyroidism, thyroid hormone therapy, and bone. Thyroid. 4(3):319–26. DOI: 10.1089/thy.1994.4.319. PMID: 7833670.
Article
10. Heemstra KA, Hamdy NA, Romijn JA, Smit JW. 2006; The effects of thyrotropin-suppressive therapy on bone metabolism in patients with well-differentiated thyroid carcinoma. Thyroid. 16(6):583–91. DOI: 10.1089/thy.2006.16.583. PMID: 16839260.
Article
11. Cellini M, Rotondi M, Tanda ML, Piantanida E, Chiovato L, Beck-Peccoz P, et al. 2021; Skeletal health in patients with differentiated thyroid carcinoma. J Endocrinol Invest. 44(3):431–42. DOI: 10.1007/s40618-020-01359-6. PMID: 32696339.
Article
12. Notsu M, Yamauchi M, Morita M, Nawata K, Sugimoto T. 2020; Papillary thyroid carcinoma is a risk factor for severe osteoporosis. J Bone Miner Metab. 38(2):264–70. DOI: 10.1007/s00774-019-01053-5. PMID: 31664535.
Article
13. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2016; 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26(1):1–133. DOI: 10.1089/thy.2015.0020. PMID: 26462967. PMCID: PMC4739132.
Article
14. Moon JH, Yi KH. 2013; The diagnosis and management of hyperthyroidism in Korea: consensus report of the Korean Thyroid Association. Endocrinol Metab (Seoul). 28(4):275–9. DOI: 10.3803/EnM.2013.28.4.275. PMID: 24396691. PMCID: PMC3871036.
Article
15. Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, et al. 2016; 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 26(10):1343–421. DOI: 10.1089/thy.2016.0229. PMID: 27521067.
Article
16. Carle A, Andersen SL, Boelaert K, Laurberg P. 2017; Management of endocrine disease: subclinical thyrotoxicosis: prevalence, causes and choice of therapy. Eur J Endocrinol. 176(6):R325–R37. DOI: 10.1530/EJE-16-0276. PMID: 28274949.
17. Chin SO, Ku CR, Kim BJ, Kim SW, Park KH, Song KH, et al. 2019; Medical treatment with somatostatin analogues in acromegaly: position statement. Endocrinol Metab (Seoul). 34(1):53–62. DOI: 10.3803/EnM.2019.34.1.53. PMID: 30912339. PMCID: PMC6435847.
Article
18. Ku EJ, Kim KJ, Kim JH, Kim MK, Ahn CH, Lee KA, et al. 2021; Diagnosis for pheochromocytoma and paraganglioma: a joint position statement of the Korean pheochromocytoma and para-ganglioma task force. Endocrinol Metab (Seoul). 36(2):322–38. DOI: 10.3803/EnM.2020.908. PMID: 33820394. PMCID: PMC8090459.
Article
19. Mosekilde L, Eriksen EF, Charles P. 1990; Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am. 19(1):35–63. DOI: 10.1016/S0889-8529(18)30338-4. PMID: 2192868.
Article
20. Mosekilde L, Melsen F, Bagger JP, Myhre-Jensen O, Schwartz Sorensen N. 1977; Bone changes in hyperthyroidism: interrelationships between bone morphometry, thyroid function and calcium-phosphorus metabolism. Acta Endocrinol (Copenh). 85(3):515–25. DOI: 10.1530/acta.0.0850515. PMID: 577336.
Article
21. Bours SP, van Geel TA, Geusens PP, Janssen MJ, Janzing HM, Hoffland GA, et al. 2011; Contributors to secondary osteoporosis and metabolic bone diseases in patients presenting with a clinical fracture. J Clin Endocrinol Metab. 96(5):1360–7. DOI: 10.1210/jc.2010-2135. PMID: 21411547.
Article
22. Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD. 2000; Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res. 15(8):1526–36. DOI: 10.1359/jbmr.2000.15.8.1526. PMID: 10934651.
Article
23. Bauer DC, Ettinger B, Nevitt MC, Stone KL. Study of Osteoporotic Fractures Research Group. 2001; Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med. 134(7):561–8. DOI: 10.7326/0003-4819-134-7-200104030-00009. PMID: 12803168.
Article
24. Vestergaard P, Rejnmark L, Mosekilde L. 2005; Influence of hyper- and hypothyroidism, and the effects of treatment with antithyroid drugs and levothyroxine on fracture risk. Calcif Tissue Int. 77(3):139–44. DOI: 10.1007/s00223-005-0068-x. PMID: 16151671.
Article
25. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, et al. 1995; Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med. 332(12):767–73. DOI: 10.1056/NEJM199503233321202. PMID: 7862179.
26. Wejda B, Hintze G, Katschinski B, Olbricht T, Benker G. 1995; Hip fractures and the thyroid: a case-control study. J Intern Med. 237(3):241–7. DOI: 10.1111/j.1365-2796.1995.tb01172.x. PMID: 7891045.
Article
27. Vestergaard P, Mosekilde L. 2003; Hyperthyroidism, bone mineral, and fracture risk--a meta-analysis. Thyroid. 13(6):585–93. DOI: 10.1089/105072503322238854. PMID: 12930603.
Article
28. Dhanwal DK, Gupta N. 2011; Bone mineral density trends in Indian patients with hyperthyroidism--effect of antithyroid therapy. J Assoc Physicians India. 59:561–2. PMID: 22334969.
29. Marshall D, Johnell O, Wedel H. 1996; Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 312(7041):1254–9. DOI: 10.1136/bmj.312.7041.1254. PMID: 8634613. PMCID: PMC2351094.
Article
30. Torgerson DJ, Campbell MK, Thomas RE, Reid DM. 1996; Prediction of perimenopausal fractures by bone mineral density and other risk factors. J Bone Miner Res. 11(2):293–7. DOI: 10.1002/jbmr.5650110219. PMID: 8822354.
Article
31. Camacho PM, Petak SM, Binkley N, Diab DL, Eldeiry LS, Farooki A, et al. 2020; American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr Pract. 26(Suppl 1):1–46. DOI: 10.4158/GL-2020-0524SUPPL. PMID: 32427503.
Article
32. Shoback D, Rosen CJ, Black DM, Cheung AM, Murad MH, Eastell R. 2020; Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society guideline update. J Clin Endocrinol Metab. 105(3):dgaa048. DOI: 10.1210/clinem/dgaa048. PMID: 32068863.
Article
33. Physician's guideline for osteoporosis. The Korean Society of Bone and Mineral Research 2020. DOI: 10.1210/clinem/dgaa048.
34. Udayakumar N, Chandrasekaran M, Rasheed MH, Suresh RV, Sivaprakash S. 2006; Evaluation of bone mineral density in thyrotoxicosis. Singapore Med J. 47(11):947–50. PMID: 17075661.
35. Ale AO, Ogbera AO, Ebili HO, Adeyemo OL, Afe TO. 2018; Prevalence, predictive factors, and characteristics of osteoporosis in hyperthyroid patients. Int J Endocrinol. 2018:3540256. DOI: 10.1155/2018/3540256. PMID: 29849614. PMCID: PMC5907485.
Article
36. Kuzma M, Vanuga P, Binkley N, Sagova I, Pavai D, Blazicek P, et al. 2018; High serum fractalkine is associated with lower trabecular bone score in premenopausal women with Graves' disease. Horm Metab Res. 50(8):609–14. DOI: 10.1055/a-0633-2814. PMID: 29954010.
Article
37. Boonya-Ussadorn T, Punkaew B, Sriassawaamorn N. 2010; A comparative study of bone mineral density between premenopausal women with hyperthyroidism and healthy premenopausal women. J Med Assoc Thai. 93 Suppl 6:S1–5. PMID: 21284134.
38. Garnero P, Vassy V, Bertholin A, Riou JP, Delmas PD. 1994; Markers of bone turnover in hyperthyroidism and the effects of treatment. J Clin Endocrinol Metab. 78(4):955–9. DOI: 10.1210/jcem.78.4.8157727. PMID: 8157727.
Article
39. Harvey RD, McHardy KC, Reid IW, Paterson F, Bewsher PD, Duncan A, et al. 1991; Measurement of bone collagen degradation in hyperthyroidism and during thyroxine replacement therapy using pyridinium cross-links as specific urinary markers. J Clin Endocrinol Metab. 72(6):1189–94. DOI: 10.1210/jcem-72-6-1189. PMID: 2026741.
Article
40. Kisakol G, Kaya A, Gonen S, Tunc R. 2003; Bone and calcium metabolism in subclinical autoimmune hyperthyroidism and hypothyroidism. Endocr J. 50(6):657–61. DOI: 10.1507/endocrj.50.657. PMID: 14709834.
Article
41. Sabuncu T, Aksoy N, Arikan E, Ugur B, Tasan E, Hatemi H. Early changes in parameters of bone and mineral metabolism during therapy for hyper- and hypothyroidism. Endocr Res. 2001; 27(1-2):203–13. DOI: 10.1081/ERC-100107181. PMID: 11428712.
Article
42. Olkawa M, Kushida K, Takahashi M, Ohishi T, Hoshino H, Suzuki M, et al. 1999; Bone turnover and cortical bone mineral density in the distal radius in patients with hyperthyroidism being treated with antithyroid drugs for various periods of time. Clin Endocrinol (Oxf). 50(2):171–6. DOI: 10.1046/j.1365-2265.1999.00626.x. PMID: 10396358.
Article
43. Karunakaran P, Maharajan C, Mohamed KN, Rachamadugu SV. 2016; Rapid restoration of bone mass after surgical management of hyperthyroidism: a prospective case control study in Southern India. Surgery. 159(3):771–6. DOI: 10.1016/j.surg.2015.10.002. PMID: 26582500.
Article
44. Kumeda Y, Inaba M, Tahara H, Kurioka Y, Ishikawa T, Morii H, et al. 2000; Persistent increase in bone turnover in Graves' patients with subclinical hyperthyroidism. J Clin Endocrinol Metab. 85(11):4157–61. DOI: 10.1210/jcem.85.11.6979. PMID: 11095447.
Article
45. Zhong N, Xu B, Cui R, Xu M, Su J, Zhang Z, et al. 2016; Positive correlation between serum osteocalcin and testosterone in male hyperthyroidism patients with high bone turnover. Exp Clin Endocrinol Diabetes. 124(7):452–6. DOI: 10.1055/s-0042-107944. PMID: 27219888.
Article
46. Ock SY, Chung YS, Choi YJ. 2016; Changes in bone mineral density and trabecular bone score in Graves' disease patients after anti-thyroid therapy. Osteoporos Sarcopenia. 2(3):175–9. DOI: 10.1016/j.afos.2016.05.004. PMID: 30775484. PMCID: PMC6372732.
Article
47. Nicolaisen P, Obling ML, Winther KH, Hansen S, Hermann AP, Hegedus L, et al. 2021; Consequences of hyperthyroidism and its treatment for bone microarchitecture assessed by high-resolution peripheral quantitative computed tomography. Thyroid. 31(2):208–16. DOI: 10.1089/thy.2020.0084. PMID: 32703114.
Article
48. Kim KM, Choi SH, Lim S, Moon JH, Kim JH, Kim SW, et al. 2014; Interactions between dietary calcium intake and bone mineral density or bone geometry in a low calcium intake population (KNHANES IV 2008-2010). J Clin Endocrinol Metab. 99(7):2409–17. DOI: 10.1210/jc.2014-1006. PMID: 24684465.
Article
49. Park JH, Hong IY, Chung JW, Choi HS. 2018; Vitamin D status in South Korean population: seven-year trend from the KNHANES. Medicine (Baltimore). 97(26):e11032. DOI: 10.1097/MD.0000000000011032. PMID: 29952942. PMCID: PMC6242298.
50. Lupoli G, Nuzzo V, Di Carlo C, Affinito P, Vollery M, Vitale G, et al. 1996; Effects of alendronate on bone loss in pre- and postmenopausal hyperthyroid women treated with methimazole. Gynecol Endocrinol. 10(5):343–8. DOI: 10.3109/09513599609012821. PMID: 8915664.
Article
51. Lupoli GA, Fittipaldi MR, Fonderico F, Panico A, Colarusso S, Di Micco L, et al. 2005; Methimazole versus methimazole and diphosphonates in hyperthyroid and osteoporotic patients. Minerva Endocrinol. 30(2):89–94. PMID: 15988404.
52. Majima T, Komatsu Y, Doi K, Takagi C, Shigemoto M, Fukao A, et al. 2006; Clinical significance of risedronate for osteoporosis in the initial treatment of male patients with Graves' disease. J Bone Miner Metab. 24(2):105–13. DOI: 10.1007/s00774-005-0655-y. PMID: 16502116.
Article
53. Kanis JA, Hans D, Cooper C, Baim S, Bilezikian JP, Binkley N, et al. 2011; Interpretation and use of FRAX in clinical practice. Osteoporos Int. 22(9):2395–411. DOI: 10.1007/s00198-011-1713-z. PMID: 21779818.
Article
54. Cooper DS, Biondi B. 2012; Subclinical thyroid disease. Lancet. 379(9821):1142–54. DOI: 10.1016/S0140-6736(11)60276-6. PMID: 22273398.
Article
55. Amato G, Mazziotti G, Sorvillo F, Piscopo M, Lalli E, Biondi B, et al. 2004; High serum osteoprotegerin levels in patients with hyperthyroidism: effect of medical treatment. Bone. 35(3):785–91. DOI: 10.1016/j.bone.2004.04.021. PMID: 15336617.
Article
56. Gürlek A, Gedik O. 1999; Effect of endogenous subclinical hyperthyroidism on bone metabolism and bone mineral density in premenopausal women. Thyroid. 9(6):539–43. DOI: 10.1089/thy.1999.9.539. PMID: 10411115.
Article
57. Tauchmanovà L, Nuzzo V, Del Puente A, Fonderico F, Esposito-Del Puente A, Padulla S, et al. 2004; Reduced bone mass detected by bone quantitative ultrasonometry and DEXA in pre- and postmenopausal women with endogenous subclinical hyperthyroidism. Maturitas. 48(3):299–306. DOI: 10.1016/j.maturitas.2004.02.017. PMID: 15207896.
Article
58. Lee WY, Oh KW, Rhee EJ, Jung CH, Kim SW, Yun EJ, et al. 2006; Relationship between subclinical thyroid dysfunction and femoral neck bone mineral density in women. Arch Med Res. 37(4):511–6. DOI: 10.1016/j.arcmed.2005.09.009. PMID: 16624651.
Article
59. Wartofsky L. 2014; Subclinical hyperthyroidism and fracture risk in women. J Clin Endocrinol Metab. 99(8):2654–6. DOI: 10.1210/jc.2014-2951. PMID: 25100111.
Article
60. Földes J, Tarján G, Szathmari M, Varga F, Krasznai I, Horvath C. 1993; Bone mineral density in patients with endogenous subclinical hyperthyroidism: is this thyroid status a risk factor for osteoporosis? Clin Endocrinol (Oxf). 39(5):521–7. DOI: 10.1111/j.1365-2265.1993.tb02403.x. PMID: 8252739.
Article
61. Faber J, Jensen IW, Petersen L, Nygaard B, Hegedüs L, Siersbaek-Nielsen K. 1998; Normalization of serum thyrotrophin by means of radioiodine treatment in subclinical hyperthyroidism: effect on bone loss in postmenopausal women. Clin Endocrinol (Oxf). 48(3):285–90. DOI: 10.1046/j.1365-2265.1998.00427.x. PMID: 9578817.
Article
62. Yan Z, Huang H, Li J, Wang J. 2016; Relationship between subclinical thyroid dysfunction and the risk of fracture: a meta-analysis of prospective cohort studies. Osteoporos Int. 27(1):115–25. DOI: 10.1007/s00198-015-3221-z. PMID: 26223189.
Article
63. Saler T, Ahbab S, Sağlam ZA, Keşkek ŞÖ, Kurnaz S. 2014; Endogenous subclinical hyperthyroidism may not lead to bone loss in premenopausal women. Hippokratia. 18(3):240–4.
64. Nicholls JJ, Brassill MJ, Williams GR, Bassett JH. 2012; The skeletal consequences of thyrotoxicosis. J Endocrinol. 213(3):209–21. DOI: 10.1530/JOE-12-0059. PMID: 22454529.
Article
65. Lee JS, Buzková P, Fink HA, Vu J, Carbone L, Chen Z, et al. 2010; Subclinical thyroid dysfunction and incident hip fracture in older adults. Arch Intern Med. 170(21):1876–83. DOI: 10.1001/archinternmed.2010.424. PMID: 21098345. PMCID: PMC4122328.
Article
66. Blum MR, Bauer DC, Collet TH, Fink HA, Cappola AR, da Costa BR, et al. 2015; Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA. 313(20):2055–65. DOI: 10.1001/jama.2015.5161. PMID: 26010634. PMCID: PMC4729304.
67. Wirth CD, Blum MR, da Costa BR, Baumgartner C, Collet TH, Medici M, et al. 2014; Subclinical thyroid dysfunction and the risk for fractures: a systematic review and meta-analysis. Ann Intern Med. 161(3):189–99. DOI: 10.7326/M14-0125. PMID: 25089863. PMCID: PMC4403766.
Article
68. Kung AW, Yeung SS. 1996; Prevention of bone loss induced by thyroxine suppressive therapy in postmenopausal women: the effect of calcium and calcitonin. J Clin Endocrinol Metab. 81(3):1232–6. DOI: 10.1210/jc.81.3.1232. PMID: 8772604.
Article
69. Grant AM, Avenell A, Campbell MK, McDonald AM, MacLennan GS, McPherson GC, et al. 2005; Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet. 365(9471):1621–8. DOI: 10.1016/S0140-6736(05)63013-9. PMID: 15885294.
Article
70. Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A. 2007; Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 370(9588):657–66. DOI: 10.1016/S0140-6736(07)61342-7.
Article
71. Weaver CM, Fleet JC. 2004; Vitamin D requirements: current and future. Am J Clin Nutr. 80(6 Suppl):1735S–9S. DOI: 10.1093/ajcn/80.6.1735S. PMID: 15585797.
Article
72. Avenell A, Gillespie WJ, Gillespie LD, O'Connell D. Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane Database Syst Rev. 2009; (2):CD000227. DOI: 10.1002/14651858.CD000227.pub3. PMID: 16034849.
Article
73. Schneider DL, Barrett-Connor EL, Morton DJ. 1994; Thyroid hormone use and bone mineral density in elderly women. Effects of estrogen. JAMA. 271(16):1245–9. DOI: 10.1001/jama.1994.03510400031027. PMID: 7848399.
Article
74. Rosen HN, Moses AC, Gundberg C, Kung VT, Seyedin SM, Chen T, et al. 1993; Therapy with parenteral pamidronate prevents thyroid hormone-induced bone turnover in humans. J Clin Endocrinol Metab. 77(3):664–9. DOI: 10.1210/jcem.77.3.8370687. PMID: 8370687.
Article
75. Faber J, Galløe AM. 1994; Changes in bone mass during prolonged subclinical hyperthyroidism due to L-thyroxine treatment: a meta-analysis. Eur J Endocrinol. 130(4):350–6. DOI: 10.1530/eje.0.1300350. PMID: 8162163.
Article
76. Papaleontiou M, Hawley ST, Haymart MR. 2016; Effect of thyrotropin suppression therapy on bone in thyroid cancer patients. Oncologist. 21(2):165–71. DOI: 10.1634/theoncologist.2015-0179. PMID: 26659220. PMCID: PMC4746080.
Article
77. Yoon BH, Lee Y, Oh HJ, Kim SH, Lee YK. 2019; Influence of thyroid-stimulating hormone suppression therapy on bone mineral density in patients with differentiated thyroid cancer: a meta-analysis. J Bone Metab. 26(1):51–60. DOI: 10.11005/jbm.2019.26.1.51. PMID: 30899725. PMCID: PMC6416150.
Article
78. Wang MY, Han ZQ, Gong XW, Li Q, Ma J. 2020; TSH-suppressive therapy can reduce bone mineral density in patients with differentiated thyroid carcinoma: a meta-analysis. Eur Rev Med Pharmacol Sci. 24(2):922–9. DOI: 10.26355/eurrev_202001_20077. PMID: 32016999.
79. Ku EJ, Yoo WS, Lee EK, Ahn HY, Woo SH, Hong JH, et al. 2021; Effect of TSH suppression therapy on bone mineral density in differentiated thyroid cancer: a systematic review and meta-analysis. J Clin Endocrinol Metab. 106(12):3655–67. DOI: 10.1210/clinem/dgab539. PMID: 34302730.
Article
80. Kwak D, Ha J, Won Y, Kwon Y, Park S. 2021; Effects of thyroid-stimulating hormone suppression after thyroidectomy for thyroid cancer on bone mineral density in postmenopausal women: a systematic review and meta-analysis. BMJ Open. 11(5):e043007. DOI: 10.1136/bmjopen-2020-043007. PMID: 33986046. PMCID: PMC8126273.
Article
81. Fujiyama K, Kiriyama T, Ito M, Kimura H, Ashizawa K, Tsuruta M, et al. 1995; Suppressive doses of thyroxine do not accelerate age-related bone loss in late postmenopausal women. Thyroid. 5(1):13–7. DOI: 10.1089/thy.1995.5.13. PMID: 7787427.
Article
82. Heijckmann AC, Huijberts MS, Geusens P, de Vries J, Menheere PP, Wolffenbuttel BH. 2005; Hip bone mineral density, bone turnover and risk of fracture in patients on long-term suppressive L-thyroxine therapy for differentiated thyroid carcinoma. Eur J Endocrinol. 153(1):23–9. DOI: 10.1530/eje.1.01933. PMID: 15994742.
Article
83. Reverter JL, Colomé E, Holgado S, Aguilera E, Soldevila B, Mateo L, et al. 2010; Bone mineral density and bone fracture in male patients receiving long-term suppressive levothyroxine treatment for differentiated thyroid carcinoma. Endocrine. 37(3):467–72. DOI: 10.1007/s12020-010-9339-z. PMID: 20960170.
Article
84. Vera L, Gay S, Campomenosi C, Paolino S, Pera G, Monti E, et al. 2016; Ten-year estimated risk of bone fracture in women with differentiated thyroid cancer under TSH-suppressive levothyroxine therapy. Endokrynol Pol. 67(4):350–8. DOI: 10.5603/EP.a2016.0046. PMID: 27387240.
Article
85. Mazziotti G, Formenti AM, Frara S, Olivetti R, Banfi G, Memo M, et al. 2018; High prevalence of radiological vertebral fractures in women on thyroid-stimulating hormone-suppressive therapy for thyroid carcinoma. J Clin Endocrinol Metab. 103(3):956–64. DOI: 10.1210/jc.2017-01986. PMID: 29121201.
Article
86. Lin SY, Lin CL, Chen HT, Kao CH. 2018; Risk of osteoporosis in thyroid cancer patients using levothyroxine: a population-based study. Curr Med Res Opin. 34(5):805–12. DOI: 10.1080/03007995.2017.1378174. PMID: 28884595.
Article
87. Shin DW, Suh B, Lim H, Yun JM, Song SO, Park Y. 2018; J-shaped association between postoperative levothyroxine dosage and fracture risk in thyroid cancer patients: a retrospective cohort study. J Bone Miner Res. 33(6):1037–43. DOI: 10.1002/jbmr.3407. PMID: 29447437.
Article
88. Bin-Hong D, Fu-Man D, Yu L, Xu-Ping W, Bing-Feng B. 2020; Effects of levothyroxine therapy on bone mineral density and bone turnover markers in premenopausal women with thyroid cancer after thyroidectomy. Endokrynol Pol. 71(1):15–20. DOI: 10.5603/EP.a2019.0049. PMID: 31681976.
Article
89. Lee MY, Park JH, Bae KS, Jee YG, Ko AN, Han YJ, et al. 2014; Bone mineral density and bone turnover markers in patients on long-term suppressive levothyroxine therapy for differentiated thyroid cancer. Ann Surg Treat Res. 86(2):55–60. DOI: 10.4174/astr.2014.86.2.55. PMID: 24761409. PMCID: PMC3994597.
Article
90. Moon JH, Kim KM, Oh TJ, Choi SH, Lim S, Park YJ, et al. 2017; The effect of TSH suppression on vertebral trabecular bone scores in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 102(1):78–85. DOI: 10.1210/jc.2016-2740. PMID: 27754806.
91. De Mingo Dominguez ML, Guadalix Iglesias S, Martin-Arriscado Arroba C, Lopez Alvarez B, Martinez Diaz-Guerra G, Martinez-Pueyo JI, et al. 2018; Low trabecular bone score in postmenopausal women with differentiated thyroid carcinoma after long-term TSH suppressive therapy. Endocrine. 62(1):166–73. DOI: 10.1007/s12020-018-1671-8. PMID: 30014437.
Article
92. Hawkins Carranza F, Guadalix Iglesias S, Luisa De Mingo Dominguez M, Martin-Arriscado Arroba C, Lopez Alvarez B, Allo Miguel G, et al. 2020; Trabecular bone deterioration in differentiated thyroid cancer: impact of long-term TSH suppressive therapy. Cancer Med. 9(16):5746–55. DOI: 10.1002/cam4.3200. PMID: 32583973. PMCID: PMC7433843.
Article
93. Moon JH, Jung KY, Kim KM, Choi SH, Lim S, Park YJ, et al. 2016; The effect of thyroid stimulating hormone suppressive therapy on bone geometry in the hip area of patients with differentiated thyroid carcinoma. Bone. 83:104–10. DOI: 10.1016/j.bone.2015.10.015. PMID: 26518742.
Article
94. Tournis S, Antoniou JD, Liakou CG, Christodoulou J, Papakitsou E, Galanos A, et al. 2015; Volumetric bone mineral density and bone geometry assessed by peripheral quantitative computed tomography in women with differentiated thyroid cancer under TSH suppression. Clin Endocrinol (Oxf). 82(2):197–204. DOI: 10.1111/cen.12560. PMID: 25040693.
Article
95. Kim K, Kim IJ, Pak K, Kim SJ, Shin S, Kim BH, et al. 2018; Evaluation of bone mineral density using DXA and cQCT in postmenopausal patients under thyrotropin suppressive therapy. J Clin Endocrinol Metab. 103(11):4232–40. DOI: 10.1210/jc.2017-02704. PMID: 29982711.
Article
96. Panico A, Lupoli GA, Fonderico F, Marciello F, Martinelli A, Assante R, et al. 2009; Osteoporosis and thyrotropin-suppressive therapy: reduced effectiveness of alendronate. Thyroid. 19(5):437–42. DOI: 10.1089/thy.2008.0428. PMID: 19415993.
Article
97. Panebianco P, Rosso D, Destro G, Scarpinato RA, Tropea S, Rizzo A, et al. 1997; Use of disphosphonates in the treatment of osteoporosis in thyroidectomized patients on levothyroxin replacement therapy. Arch Gerontol Geriatr. 25(2):219–25. DOI: 10.1016/S0167-4943(97)00013-7. PMID: 18653109.
Article
98. Asari R, Passler C, Kaczirek K, Scheuba C, Niederle B. 2008; Hypoparathyroidism after total thyroidectomy: a prospective study. Arch Surg. 143(2):132–7. discussion 8DOI: 10.1001/archsurg.2007.55. PMID: 18283137.
99. Pattou F, Combemale F, Fabre S, Carnaille B, Decoulx M, Wemeau JL, et al. 1998; Hypocalcemia following thyroid surgery: incidence and prediction of outcome. World J Surg. 22(7):718–24. DOI: 10.1007/s002689900459. PMID: 9606288.
Article
100. Roher HD, Goretzki PE, Hellmann P, Witte J. 1999; Complications in thyroid surgery. Incidence and therapy. Chirurg. 70(9):999–1010. DOI: 10.1007/s001040050757. PMID: 10501664.
101. Thomusch O, Machens A, Sekulla C, Ukkat J, Brauckhoff M, Dralle H. 2003; The impact of surgical technique on postoperative hypoparathyroidism in bilateral thyroid surgery: a multivariate analysis of 5846 consecutive patients. Surgery. 133(2):180–5. DOI: 10.1067/msy.2003.61. PMID: 12605179.
Article
102. Thomusch O, Machens A, Sekulla C, Ukkat J, Lippert H, Gastinger I, et al. 2000; Multivariate analysis of risk factors for postoperative complications in benign goiter surgery: prospective multicenter study in Germany. World J Surg. 24(11):1335–41. DOI: 10.1007/s002680010221. PMID: 11038203.
Article
103. Testini M, Gurrado A, Lissidini G, Nacchiero M. 2007; Hypoparathyroidism after total thyroidectomy. Minerva Chir. 62(5):409–15. DOI: 10.1001/archsurg.2007.44. PMID: 17947951.
104. Kakava K, Tournis S, Papadakis G, Karelas I, Stampouloglou P, Kassi E, et al. 2016; Postsurgical hypoparathyroidism: a systematic review. In Vivo. 30(3):171–9. DOI: 10.1007/s12020-019-01858-4. PMID: 27107072.
105. Silva B, Kousteni S. Bilezikian J, editor. Cellular actions of PTH: osteoblasts, osteoclasts, and osteocytes. The parathyroids. 3rd ed. San Diego: Elsevier Inc.;2015. p. 127–37. DOI: 10.1016/B978-0-12-397166-1.00008-4.
106. Rubin MR, Dempster DW, Zhou H, Shane E, Nickolas T, Sliney J Jr, et al. 2008; Dynamic and structural properties of the skeleton in hypoparathyroidism. J Bone Miner Res. 23(12):2018–24. DOI: 10.1359/jbmr.080803. PMID: 18684087. PMCID: PMC2686925.
Article
107. Clarke BL. 2014; Bone disease in hypoparathyroidism. Arq Bras Endocrinol Metabol. 58(5):545–52. DOI: 10.1590/0004-2730000003399. PMID: 25166046.
Article
108. Chan FK, Tiu SC, Choi KL, Choi CH, Kong AP, Shek CC. 2003; Increased bone mineral density in patients with chronic hypoparathyroidism. J Clin Endocrinol Metab. 88(7):3155–9. DOI: 10.1210/jc.2002-021388. PMID: 12843159.
Article
109. Amrein K, Dimai HP, Dobnig H, Fahrleitner-Pammer A. 2011; Low bone turnover and increase of bone mineral density in a premenopausal woman with postoperative hypoparathyroidism and thyroxine suppressive therapy. Osteoporos Int. 22(11):2903–5. DOI: 10.1007/s00198-010-1441-9. PMID: 20959964.
Article
110. Takamura Y, Miyauchi A, Yabuta T, Kihara M, Ito Y, Miya A. 2013; Attenuation of postmenopausal bone loss in patients with transient hypoparathyroidism after total thyroidectomy. World J Surg. 37(12):2860–5. DOI: 10.1007/s00268-013-2207-2. PMID: 24045966.
Article
111. Bollerslev J, Rejnmark L, Marcocci C, Shoback DM, Sitges-Serra A, van Biesen W, et al. 2015; European Society of Endocrinology Clinical Guideline: treatment of chronic hypoparathyroidism in adults. Eur J Endocrinol. 173(2):G1–20. DOI: 10.1530/EJE-15-0628. PMID: 26160136.
Article
112. Orloff LA, Wiseman SM, Bernet VJ, Fahey TJ 3rd, Shaha AR, Shindo ML, et al. 2018; American Thyroid Association statement on postoperative hypoparathyroidism: diagnosis, prevention, and management in adults. Thyroid. 28(7):830–41. DOI: 10.1089/thy.2017.0309. PMID: 29848235.
Article
Full Text Links
  • IJT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr