Korean J Physiol Pharmacol.  2022 Jan;26(1):1-13. 10.4196/kjpp.2022.26.1.1.

Kidney protective potential of lactoferrin: pharmacological insights and therapeutic advances

Affiliations
  • 1ABEx Bio-Research Center, Dhaka 1230, Bangladesh, Italy
  • 2Department of Prevention, Local Health Unit Roma 1, Rome 00185, Italy
  • 3Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00185, Italy
  • 4Graduate School of Pharmaceutical Sciences, Ewha Womans University College of Pharmacy, Seoul 03760, Korea

Abstract

Kidney disease is becoming a global public health issue. Acute kidney injury (AKI) and chronic kidney disease (CKD) have serious adverse health outcomes. However, there is no effective therapy to treat these diseases. Lactoferrin (LF), a multi-functional glycoprotein, is protective against various pathophysiological conditions in various disease models. LF shows protective effects against AKI and CKD. LF reduces markers related to inflammation, oxidative stress, apoptosis, and kidney fibrosis, and induces autophagy and mitochondrial biogenesis in the kidney. Although there are no clinical trials of LF to treat kidney disease, several clinical trials and studies on LF-based drug development are ongoing. In this review, we discussed the possible kidney protective mechanisms of LF, as well as the pharmacological and therapeutic advances. The evidence suggests that LF may become a potent pharmacological agent to treat kidney diseases.

Keyword

Drug development; Kidney disease; Lactoferrin; Pharmacology; Therapeutics

Figure

  • Fig. 1 Crystal structures of (A) bovine lactoferrin (bLF, PDB code = 1BLF), and (B) human lactoferrin (1LFG). AS1, AS2, AS3, AS4, and AS5 indicate the active sites of LF.

  • Fig. 2 Mechanisms of lactoferrin (LF) against AKI. Hyperoxia (FiO2 > 95 %) induces inflammation via ROS generation, MAPK and NF-κB activation. LF inhibits inflammation by reducing ROS generation and downregulating pro-inflammatory cytokines. PDC significantly increases NF-κB, IL-18, IL-4, and IGF-1 accompanied by kidney MDA and decreased GSH. Increased IL-4 leads to TNF-α expression and inflammation. IGF-1 enhances FoxO1 production, leading to tubular epithelial hyperplasia. Increased MDA leads to oxidative stress. PDC also increases Bax and caspase-3, resulting in apoptosis. LF prevents AKI by inhibiting PDC-induced inflammation, hyperplasia, apoptosis, and oxidative stress. Fe-NTA lowers the GSH content that causes oxidative stress. LF normalizes GSH and inhibits oxidative stress. Also, cisplatin causes cisplatin accumulation in the kidney that leads to tubular necrosis. LF decreases platinum content in the kidney, prevents cisplatin accumulation and inhibits tubular injury. AKI, acute kidney injury; Bax, BCL2 associated X; Fe-NTA, ferric nitrilotriacetate; FiO2, the fraction of inspired oxygen; FoxO1, forkhead box protein O1; GSH, glutathione; IGF-1, insulin-like growth factor-1; IL, interleukin; MDA, malondialdehyde; NF-κB, nuclear factor kappa B; PCNA, proliferating cell nuclear antigen; PDC, potassium dichromate; TNF-α, tumor necrosis factor alpha; MAPK, mitogen-activated protein kinase; ROS, reactive oxygen species.

  • Fig. 3 Mechanisms of lactoferrin (LF) against CKD. LF induces autophagy by activating AMPK and inhibiting the Akt/mTOR pathway. Hydrogen peroxide (H2O2) causes oxidative stress-induced cell death and apoptosis. LF inhibits cell death and apoptosis by augmenting autophagy and reducing caspase-3. Folic acid induces kidney fibrosis, and LF prevents that by inhibiting apoptosis and inducing autophagy. TGF-β1 induces fibrosis by increasing the expression of PAI-1, CTGF, and collagen-1, and LF inhibits fibrosis by decreasing their expression. A high fat and salt condition promotes inflammation leading to kidney damage. LF inhibits inflammation and protects against kidney damage by reducing inflammatory cytokines. AKT, protein kinase B; AMPK, AMP-activated protein kinase; Bax, BCL2 associated X; CKD, chronic kidney disease; Col1, collagen 1; CTGF, connective tissue growth factor; IL, interleukin; LC3, light chain 3; MCP-1, monocyte chemoattractant protein-1; mTOR, mechanistic target of rapamycin; PAI-1, plasminogen activator inhibitor-1; TGF-β1, transforming growth factor beta 1; α-SMA, alpha-smooth muscle actin.


Reference

1. Couser WG, Remuzzi G, Mendis S, Tonelli M. 2011; The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 80:1258–1270. DOI: 10.1038/ki.2011.368. PMID: 21993585.
Article
2. Bikbov B, Perico N, Remuzzi G. 2018; Disparities in chronic kidney disease prevalence among males and females in 195 countries: analysis of the global burden of disease 2016 study. Nephron. 139:313–318. DOI: 10.1159/000489897. PMID: 29791905.
Article
3. Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS, Hobbs FD. 2016; Global prevalence of chronic kidney disease- a systematic review and meta-analysis. PLoS One. 11:e0158765. DOI: 10.1371/journal.pone.0158765. PMID: 27383068. PMCID: PMC4934905.
4. Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. 2019; A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol Dial Transplant. 34:1803–1805. DOI: 10.1093/ndt/gfz174. PMID: 31566230.
Article
5. Kimura T, Isaka Y, Yoshimori T. 2017; Autophagy and kidney inflammation. Autophagy. 13:997–1003. DOI: 10.1080/15548627.2017.1309485. PMID: 28441075. PMCID: PMC5486362.
Article
6. Meijer E, Boertien WE, Nauta FL, Bakker SJ, van Oeveren W, Rook M, van der Jagt EJ, van Goor H, Peters DJ, Navis G, de Jong PE, Gansevoort RT. 2010; Association of urinary biomarkers with disease severity in patients with autosomal dominant polycystic kidney disease: a cross-sectional analysis. Am J Kidney Dis. 56:883–895. DOI: 10.1053/j.ajkd.2010.06.023. PMID: 20888104.
Article
7. Schrier R, McFann K, Johnson A, Chapman A, Edelstein C, Brosnahan G, Ecder T, Tison L. 2002; Cardiac and renal effects of standard versus rigorous blood pressure control in autosomal-dominant polycystic kidney disease: results of a seven-year prospective randomized study. J Am Soc Nephrol. 13:1733–1739. DOI: 10.1097/01.ASN.0000018407.60002.B9. PMID: 12089368.
Article
8. van Dijk MA, Breuning MH, Duiser R, van Es LA, Westendorp RG. 2003; No effect of enalapril on progression in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 18:2314–2320. DOI: 10.1093/ndt/gfg417. PMID: 14551359.
Article
9. Guo C, Xue H, Guo T, Zhang W, Xuan WQ, Ren YT, Wang D, Chen YH, Meng YH, Gao HL, Zhao P. 2020; Recombinant human lactoferrin attenuates the progression of hepatosteatosis and hepatocellular death by regulating iron and lipid homeostasis in ob/ob mice. Food Funct. 11:7183–7196. DOI: 10.1039/D0FO00910E. PMID: 32756704.
Article
10. Actor JK, Hwang SA, Kruzel ML. 2009; Lactoferrin as a natural immune modulator. Curr Pharm Des. 15:1956–1973. DOI: 10.2174/138161209788453202. PMID: 19519436. PMCID: PMC2915836.
Article
11. Hegazy R, Salama A, Mansour D, Hassan A. 2016; Renoprotective effect of lactoferrin against chromium-induced acute kidney injury in rats: involvement of IL-18 and IGF-1 inhibition. PLoS One. 11:e0151486. DOI: 10.1371/journal.pone.0151486. PMID: 26990190. PMCID: PMC4798745.
Article
12. Belizi S, Nazarova IA, Klimova IA, Prokof'ev VN, Pushkina NV. 1999; Antioxidant properties of lactoferrin from human milk. Bull Exp Biol Med. 127:471–473. DOI: 10.1007/BF02434942.
Article
13. Sinopoli A, Isonne C, Santoro MM, Baccolini V. 2021; The effects of orally administered lactoferrin in the prevention and management of viral infections: a systematic review. Rev Med Virol. doi: 10.1002/rmv.2261. [Epub ahead of print]. DOI: 10.1002/rmv.2261. PMID: 34133812.
Article
14. Fernandes KE, Carter DA. 2017; The antifungal activity of lactoferrin and its derived peptides: mechanisms of action and synergy with drugs against fungal pathogens. Front Microbiol. 8:2. DOI: 10.3389/fmicb.2017.00002. PMID: 28149293. PMCID: PMC5241296.
Article
15. Jenssen H, Hancock RE. 2009; Antimicrobial properties of lactoferrin. Biochimie. 91:19–29. DOI: 10.1016/j.biochi.2008.05.015. PMID: 18573312.
Article
16. Shi P, Liu M, Fan F, Chen H, Yu C, Lu W, Du M. 2018; Identification and mechanism of peptides with activity promoting osteoblast proliferation from bovine lactoferrin. Food Biosci. 22:19–25. DOI: 10.1016/j.fbio.2017.12.011.
Article
17. Qari SH, Attia K. 2020; Gene expression of renal lactoferrin and glycemic homeostasis in diabetic rats with reference to the protective role of exogenous bovine lactoferrin. J Basic Appl Zool. 81:12. DOI: 10.1186/s41936-020-00152-4.
Article
18. Hao L, Shan Q, Wei J, Ma F, Sun P. 2019; Lactoferrin: major physiological functions and applications. Curr Protein Pept Sci. 20:139–144. DOI: 10.2174/1389203719666180514150921. PMID: 29756573.
Article
19. Yen CC, Chang WH, Tung MC, Chen HL, Liu HC, Liao CH, Lan YW, Chong KY, Yang SH, Chen CM. 2020; Lactoferrin protects hyperoxia-induced lung and kidney systemic inflammation in an in vivo imaging model of NF-κB/luciferase transgenic mice. Mol Imaging Biol. 22:526–538. DOI: 10.1007/s11307-019-01390-x. PMID: 31286353.
Article
20. Iigo M, Alexander DB, Xu J, Futakuchi M, Suzui M, Kozu T, Akasu T, Saito D, Kakizoe T, Yamauchi K, Abe F, Takase M, Sekine K, Tsuda H. 2014; Inhibition of intestinal polyp growth by oral ingestion of bovine lactoferrin and immune cells in the large intestine. Biometals. 27:1017–1029. DOI: 10.1007/s10534-014-9747-2. PMID: 24867408. PMCID: PMC4155176.
Article
21. Chen HL, Yen CC, Wang SM, Tsai TC, Lai ZL, Sun JY, Lin W, Hsu WH, Chen CM. 2014; Aerosolized bovine lactoferrin reduces lung injury and fibrosis in mice exposed to hyperoxia. Biometals. 27:1057–1068. DOI: 10.1007/s10534-014-9750-7. PMID: 24842100.
Article
22. Ahmed KA, Saikat ASM, Moni A, Kakon SAM, Islam MR, Uddin MJ. 2021; Lactoferrin: potential functions, pharmacological insights, and therapeutic promises. J Adv Biotechnol Exp Ther. 4:223–237. DOI: 10.5455/jabet.2021.d123.
Article
23. Hsu YH, Chiu IJ, Lin YF, Chen YJ, Lee YH, Chiu HW. 2020; Lactoferrin contributes a renoprotective effect in acute kidney injury and early renal fibrosis. Pharmaceutics. 12:434. DOI: 10.3390/pharmaceutics12050434. PMID: 32397266. PMCID: PMC7284869.
Article
24. Sørensen M, Sørensen SPL. 1939. Comptes Rendus des travaux du Laboratoire Carlsberg. The Proteins in whey. Hagerup in Komm.;Copenhague: p. 3–9.
25. Karav S, German JB, Rouquié C, Le Parc A, Barile D. 2017; Studying lactoferrin N-glycosylation. Int J Mol Sci. 18:870. DOI: 10.3390/ijms18040870. PMID: 28425960. PMCID: PMC5412451.
Article
26. Adlerova L, Bartoskova A, Faldyna M. 2008; Lactoferrin: a review. Vet Med. 53:457–468. DOI: 10.17221/1978-VETMED.
Article
27. Furmanski P, Li ZP, Fortuna MB, Swamy CV, Das MR. 1989; Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. J Exp Med. 170:415–429. DOI: 10.1084/jem.170.2.415. PMID: 2754391. PMCID: PMC2189405.
Article
28. Jiang R, Lopez V, Kelleher SL, Lönnerdal B. 2011; Apo- and holo-lactoferrin are both internalized by lactoferrin receptor via clathrin-mediated endocytosis but differentially affect ERK-signaling and cell proliferation in Caco-2 cells. J Cell Physiol. 226:3022–3031. DOI: 10.1002/jcp.22650. PMID: 21935933. PMCID: PMC3178039.
Article
29. Suzuki YA, Lopez V, Lönnerdal B. 2005; Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci. 62:2560–2575. DOI: 10.1007/s00018-005-5371-1. PMID: 16261254.
30. Takayama Y, Aoki R, Uchida R, Tajima A, Aoki-Yoshida A. 2017; Role of CXC chemokine receptor type 4 as a lactoferrin receptor. Biochem Cell Biol. 95:57–63. DOI: 10.1139/bcb-2016-0039. PMID: 28075616.
Article
31. Gao CH, Dong HL, Tai L, Gao XM. 2018; Lactoferrin-containing immunocomplexes drive the conversion of human macrophages from M2- into M1-like phenotype. Front Immunol. 9:37. DOI: 10.3389/fimmu.2018.00037. PMID: 29410669. PMCID: PMC5787126.
Article
32. Shin K, Wakabayashi H, Yamauchi K, Yaeshima T, Iwatsuki K. 2008; Recombinant human intelectin binds bovine lactoferrin and its peptides. Biol Pharm Bull. 31:1605–1608. DOI: 10.1248/bpb.31.1605. PMID: 18670097.
Article
33. Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaïssa M, Spik G, Cecchelli R, Pierce A. 1999; Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem. 274:7011–7017. DOI: 10.1074/jbc.274.11.7011. PMID: 10066755.
Article
34. Rawat P, Kumar S, Sheokand N, Raje CI, Raje M. 2012; The multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a novel macrophage lactoferrin receptor. Biochem Cell Biol. 90:329–338. DOI: 10.1139/o11-058. PMID: 22292499.
35. Milewska A, Zarebski M, Nowak P, Stozek K, Potempa J, Pyrc K. 2014; Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J Virol. 88:13221–13230. DOI: 10.1128/JVI.02078-14. PMID: 25187545. PMCID: PMC4249106.
Article
36. Lang J, Yang N, Deng J, Liu K, Yang P, Zhang G, Jiang C. 2011; Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One. 6:e23710. DOI: 10.1371/journal.pone.0023710. PMID: 21887302. PMCID: PMC3161750.
Article
37. Kanwar JR, Mahidhara G, Roy K, Sasidharan S, Krishnakumar S, Prasad N, Sehgal R, Kanwar RK. 2015; Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. Nanomedicine (Lond). 10:35–55. DOI: 10.2217/nnm.14.132. PMID: 25017148.
Article
38. Gupta I, Sehgal R, Kanwar RK, Punj V, Kanwar JR. 2015; Nanocapsules loaded with iron-saturated bovine lactoferrin have antimicrobial therapeutic potential and maintain calcium, zinc and iron metabolism. Nanomedicine (Lond). 10:1289–1314. DOI: 10.2217/nnm.14.209. PMID: 25442715.
Article
39. Meng Q, Wang A, Hua H, Jiang Y, Wang Y, Mu H, Wu Z, Sun K. 2018; Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer's disease. Int J Nanomedicine. 13:705–718. DOI: 10.2147/IJN.S151474. PMID: 29440896. PMCID: PMC5798568.
40. Akiyama Y, Oshima K, Kuhara T, Shin K, Abe F, Iwatsuki K, Nadano D, Matsuda T. 2013; A lactoferrin-receptor, intelectin 1, affects uptake, sub-cellular localization and release of immunochemically detectable lactoferrin by intestinal epithelial Caco-2 cells. J Biochem. 154:437–448. DOI: 10.1093/jb/mvt073. PMID: 23921499.
Article
41. Kanwar JR, Kamalapuram SK, Krishnakumar S, Kanwar RK. 2016; Multimodal iron oxide (Fe3O4)-saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER(-)/PR(-)/HER2(-)). Nanomedicine (Lond). 11:249–268. DOI: 10.2217/nnm.15.199. PMID: 26785603.
Article
42. Ando K, Hasegawa K, Shindo K, Furusawa T, Fujino T, Kikugawa K, Nakano H, Takeuchi O, Akira S, Akiyama T, Gohda J, Inoue J, Hayakawa M. 2010; Human lactoferrin activates NF-kappaB through the Toll-like receptor 4 pathway while it interferes with the lipopolysaccharide-stimulated TLR4 signaling. FEBS J. 277:2051–2066. DOI: 10.1111/j.1742-4658.2010.07620.x. PMID: 20345905.
43. Ronco C, Bellomo R, Kellum JA. 2019; Acute kidney injury. Lancet. 394:1949–1964. DOI: 10.1016/S0140-6736(19)32563-2. PMID: 31777389.
Article
44. Basile DP, Anderson MD, Sutton TA. 2012; Pathophysiology of acute kidney injury. Compr Physiol. 2:1303–1353. DOI: 10.1002/cphy.c110041. PMID: 23798302. PMCID: PMC3919808.
Article
45. Kimoto Y, Nishinohara M, Sugiyama A, Haruna A, Takeuchi T. 2013; Protective effect of lactoferrin on cisplatin-induced nephrotoxicity in rats. J Vet Med Sci. 75:159–164. DOI: 10.1292/jvms.12-0154. PMID: 23059800.
Article
46. Okazaki Y, Kono I, Kuriki T, Funahashi S, Fushimi S, Iqbal M, Okada S, Toyokuni S. 2012; Bovine lactoferrin ameliorates ferric nitrilotriacetate-induced renal oxidative damage in rats. J Clin Biochem Nutr. 51:84–90. DOI: 10.3164/jcbn.11-100. PMID: 22962523. PMCID: PMC3432831.
Article
47. Arab HH, Salama SA, Maghrabi IA. 2018; Camel milk ameliorates 5-fluorouracil-induced renal injury in rats: targeting MAPKs, NF-κB and PI3K/Akt/eNOS pathways. Cell Physiol Biochem. 46:1628–1642. DOI: 10.1159/000489210. PMID: 29694984.
Article
48. Li D, Hu Z, He Q, Guo Y, Chong Y, Xu J, Qin L. 2021; Lactoferrin alleviates acute alcoholic liver injury by improving redox-stress response capacity in female C57BL/6J mice. J Agric Food Chem. 69:14856–14867. DOI: 10.1021/acs.jafc.1c06813. PMID: 34873911.
Article
49. Ammendolia MG, Marchetti M, Superti F. 2007; Bovine lactoferrin prevents the entry and intercellular spread of herpes simplex virus type 1 in Green Monkey Kidney cells. Antiviral Res. 76:252–262. DOI: 10.1016/j.antiviral.2007.07.005. PMID: 17881064.
Article
50. Ibuki M, Shoda C, Miwa Y, Ishida A, Tsubota K, Kurihara T. 2020; Lactoferrin has a therapeutic effect via HIF inhibition in a murine model of choroidal neovascularization. Front Pharmacol. 11:174. DOI: 10.3389/fphar.2020.00174. PMID: 32180725. PMCID: PMC7059857.
Article
51. Shimmura S, Shimoyama M, Hojo M, Urayama K, Tsubota K. 1998; Reoxygenation injury in a cultured corneal epithelial cell line protected by the uptake of lactoferrin. Invest Ophthalmol Vis Sci. 39:1346–1351. PMID: 9660482.
52. van de Looij Y, Ginet V, Chatagner A, Toulotte A, Somm E, Hüppi PS, Sizonenko SV. 2014; Lactoferrin during lactation protects the immature hypoxic-ischemic rat brain. Ann Clin Transl Neurol. 1:955–967. DOI: 10.1002/acn3.138. PMID: 25574471. PMCID: PMC4284122.
Article
53. Levey AS, Coresh J. 2012; Chronic kidney disease. Lancet. 379:165–180. DOI: 10.1016/S0140-6736(11)60178-5. PMID: 27887750.
Article
54. Singh A, Zapata RC, Pezeshki A, Knight CG, Tuor UI, Chelikani PK. 2020; Whey protein and its components lactalbumin and lactoferrin affect energy balance and protect against stroke onset and renal damage in salt-loaded, high-fat fed male spontaneously hypertensive stroke-prone rats. J Nutr. 150:763–774. DOI: 10.1093/jn/nxz312. PMID: 31879775.
Article
55. Saito H. 2013; Toxico-pharmacological perspective of the Nrf2-Keap1 defense system against oxidative stress in kidney diseases. Biochem Pharmacol. 85:865–872. DOI: 10.1016/j.bcp.2013.01.006. PMID: 23333765.
Article
56. Burton GJ, Jauniaux E. 2011; Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 25:287–299. DOI: 10.1016/j.bpobgyn.2010.10.016. PMID: 21130690. PMCID: PMC3101336.
Article
57. Betteridge DJ. 2000; What is oxidative stress? Metabolism. 49(2 Suppl 1):3–8. DOI: 10.1016/S0026-0495(00)80077-3.
Article
58. Halliwell B. 2007; Biochemistry of oxidative stress. Biochem Soc Trans. 35(Pt 5):1147–1150. DOI: 10.1042/BST0351147. PMID: 17956298.
Article
59. Sies H. Keaney JF, editor. 2000. What is oxidative stress? Oxidative stress and vascular disease. Springer;Boston: p. 1–8. DOI: 10.1007/978-1-4615-4649-8_1.
Article
60. Jones DP. 2006; Redefining oxidative stress. Antioxid Redox Signal. 8:1865–1879. DOI: 10.1089/ars.2006.8.1865. PMID: 16987039.
Article
61. Ozbek E. 2012; Induction of oxidative stress in kidney. Int J Nephrol. 2012:465897. DOI: 10.1155/2012/465897. PMID: 22577546. PMCID: PMC3345218.
Article
62. Rojas-Rivera J, Ortiz A, Egido J. 2012; Antioxidants in kidney diseases: the impact of bardoxolone methyl. Int J Nephrol. 2012:321714. DOI: 10.1155/2012/321714. PMID: 22701794. PMCID: PMC3373077.
Article
63. Finaud J, Lac G, Filaire E. 2006; Oxidative stress: relationship with exercise and training. Sports Med. 36:327–358. DOI: 10.2165/00007256-200636040-00004. PMID: 16573358.
64. Taniyama Y, Griendling KK. 2003; Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension. 42:1075–1081. DOI: 10.1161/01.HYP.0000100443.09293.4F. PMID: 14581295.
65. Griendling KK, Sorescu D, Ushio-Fukai M. 2000; NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 86:494–501. DOI: 10.1161/01.RES.86.5.494. PMID: 10720409.
66. Kwon G, Uddin MJ, Lee G, Jiang S, Cho A, Lee JH, Lee SR, Bae YS, Moon SH, Lee SJ, Cha DR, Ha H. 2017; A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis. Oncotarget. 8:74217–74232. DOI: 10.18632/oncotarget.18540. PMID: 29088780. PMCID: PMC5650335.
Article
67. Sureshbabu A, Ryter SW, Choi ME. 2015; Oxidative stress and autophagy: crucial modulators of kidney injury. Redox Biol. 4:208–214. DOI: 10.1016/j.redox.2015.01.001. PMID: 25613291. PMCID: PMC4803795.
Article
68. Uddin MJ, Kim EH, Hannan MA, Ha H. 2021; Pharmacotherapy against oxidative stress in chronic kidney disease: promising small molecule natural products targeting Nrf2-HO-1 signaling. Antioxidants (Basel). 10:258. DOI: 10.3390/antiox10020258. PMID: 33562389. PMCID: PMC7915495.
Article
69. Modaresi A, Nafar M, Sahraei Z. 2015; Oxidative stress in chronic kidney disease. Iran J Kidney Dis. 9:165–179. PMID: 25957419.
70. Kruzel ML, Zimecki M, Actor JK. 2017; Lactoferrin in a context of inflammation-induced pathology. Front Immunol. 8:1438. DOI: 10.3389/fimmu.2017.01438. PMID: 29163511. PMCID: PMC5681489.
Article
71. Medzhitov R. 2008; Origin and physiological roles of inflammation. Nature. 454:428–435. DOI: 10.1038/nature07201. PMID: 18650913.
Article
72. Nathan C. 2002; Points of control in inflammation. Nature. 420:846–852. DOI: 10.1038/nature01320. PMID: 12490957.
Article
73. Majno G, Joris I. 2004. Cells, tissues, and disease: principles of general pathology. Oxford University Press;New York:
74. Fan J, Xie K, Wang L, Zheng N, Yu X. 2019; Roles of inflammasomes in inflammatory kidney diseases. Mediators Inflamm. 2019:2923072. DOI: 10.1155/2019/2923072. PMID: 31427885. PMCID: PMC6679869.
Article
75. Ernandez T, Mayadas TN. 2009; Immunoregulatory role of TNFalpha in inflammatory kidney diseases. Kidney Int. 76:262–276. DOI: 10.1038/ki.2009.142. PMID: 19436333.
76. Panzer U, Steinmetz OM, Turner JE, Meyer-Schwesinger C, von Ruffer C, Meyer TN, Zahner G, Gómez-Guerrero C, Schmid RM, Helmchen U, Moeckel GW, Wolf G, Stahl RA, Thaiss F. 2009; Resolution of renal inflammation: a new role for NF-kappaB1 (p50) in inflammatory kidney diseases. Am J Physiol Renal Physiol. 297:F429–F439. DOI: 10.1152/ajprenal.90435.2008. PMID: 19458123.
77. Serhan CN. 2011; The resolution of inflammation: the devil in the flask and in the details. FASEB J. 25:1441–1448. DOI: 10.1096/fj.11-0502ufm. PMID: 21532053. PMCID: PMC3228345.
Article
78. Drago-Serrano ME, Campos-Rodríguez R, Carrero JC, de la Garza M. 2017; Lactoferrin: balancing ups and downs of inflammation due to microbial infections. Int J Mol Sci. 18:501. DOI: 10.3390/ijms18030501. PMID: 28257033. PMCID: PMC5372517.
Article
79. Abrink M, Larsson E, Gobl A, Hellman L. 2000; Expression of lactoferrin in the kidney: implications for innate immunity and iron metabolism. Kidney Int. 57:2004–2010. DOI: 10.1046/j.1523-1755.2000.00050.x. PMID: 10792619.
80. García-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz Q. 2012; Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta. 1820:226–236. DOI: 10.1016/j.bbagen.2011.06.018. PMID: 21726601. PMCID: PMC7127262.
Article
81. Humphreys BD. 2018; Mechanisms of renal fibrosis. Annu Rev Physiol. 80:309–326. DOI: 10.1146/annurev-physiol-022516-034227. PMID: 29068765.
Article
82. Liu Y. 2006; Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 69:213–217. DOI: 10.1038/sj.ki.5000054. PMID: 16408108.
Article
83. Jeong BY, Uddin MJ, Park JH, Lee JH, Lee HB, Miyata T, Ha H. 2016; Novel plasminogen activator inhibitor-1 inhibitors prevent diabetic kidney injury in a mouse model. PLoS One. 11:e0157012. DOI: 10.1371/journal.pone.0157012. PMID: 27258009. PMCID: PMC4892642.
Article
84. Liu Y. 2011; Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 7:684–696. DOI: 10.1038/nrneph.2011.149. PMID: 22009250. PMCID: PMC4520424.
Article
85. Klahr S, Morrissey J. 2002; Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol. 283:F861–F875. DOI: 10.1152/ajprenal.00362.2001. PMID: 12372761.
Article
86. Efstratiadis G, Divani M, Katsioulis E, Vergoulas G. 2009; Renal fibrosis. Hippokratia. 13:224–229. PMID: 20011086. PMCID: PMC2776335.
87. Wick G, Grundtman C, Mayerl C, Wimpissinger TF, Feichtinger J, Zelger B, Sgonc R, Wolfram D. 2013; The immunology of fibrosis. Annu Rev Immunol. 31:107–135. DOI: 10.1146/annurev-immunol-032712-095937. PMID: 23516981.
Article
88. Meng XM, Nikolic-Paterson DJ, Lan HY. 2014; Inflammatory processes in renal fibrosis. Nat Rev Nephrol. 10:493–503. DOI: 10.1038/nrneph.2014.114. PMID: 24981817.
Article
89. Mizushima N. 2007; Autophagy: process and function. Genes Dev. 21:2861–2873. DOI: 10.1101/gad.1599207. PMID: 18006683.
Article
90. Kelekar A. 2005; Autophagy. Ann N Y Acad Sci. 1066:259–71. DOI: 10.1196/annals.1363.015. PMID: 16533930.
Article
91. Mariño G, Madeo F, Kroemer G. 2011; Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol. 23:198–206. DOI: 10.1016/j.ceb.2010.10.001. PMID: 21030235.
Article
92. Stern ST, Adiseshaiah PP, Crist RM. 2012; Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 9:20. DOI: 10.1186/1743-8977-9-20. PMID: 22697169. PMCID: PMC3441384.
Article
93. White E, DiPaola RS. 2009; The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 15:5308–5316. DOI: 10.1158/1078-0432.CCR-07-5023. PMID: 19706824. PMCID: PMC2737083.
Article
94. Brest P, Corcelle EA, Cesaro A, Chargui A, Belaïd A, Klionsky DJ, Vouret-Craviari V, Hebuterne X, Hofman P, Mograbi B. 2010; Autophagy and Crohn's disease: at the crossroads of infection, inflammation, immunity, and cancer. Curr Mol Med. 10:486–502. DOI: 10.2174/156652410791608252. PMID: 20540703. PMCID: PMC3655526.
Article
95. Pan T, Kondo S, Le W, Jankovic J. 2008; The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain. 131(Pt 8):1969–1978. DOI: 10.1093/brain/awm318. PMID: 18187492.
Article
96. Kruzel ML, Actor JK, Radak Z, Bacsi A, Saavedra-Molina A, Boldogh I. 2010; Lactoferrin decreases LPS-induced mitochondrial dysfunction in cultured cells and in animal endotoxemia model. Innate Immun. 16:67–79. DOI: 10.1177/1753425909105317. PMID: 19723832. PMCID: PMC3030479.
Article
97. Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, Rakugi H, Isaka Y. 2011; Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol. 22:902–913. DOI: 10.1681/ASN.2010070705. PMID: 21493778. PMCID: PMC3083312.
Article
98. Pabla N, Dong Z. 2008; Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 73:994–1007. DOI: 10.1038/sj.ki.5002786. PMID: 18272962.
Article
99. Ding Y, Choi ME. 2015; Autophagy in diabetic nephropathy. J Endocrinol. 224:R15–R30. DOI: 10.1530/JOE-14-0437. PMID: 25349246. PMCID: PMC4238413.
Article
100. Lin TA, Wu VC, Wang CY. 2019; Autophagy in chronic kidney diseases. Cells. 8:61. DOI: 10.3390/cells8010061. PMID: 30654583. PMCID: PMC6357204.
Article
101. Sohn M, Kim K, Uddin MJ, Lee G, Hwang I, Kang H, Kim H, Lee JH, Ha H. 2017; Delayed treatment with fenofibrate protects against high-fat diet-induced kidney injury in mice: the possible role of AMPK autophagy. Am J Physiol Renal Physiol. 312:F323–F334. DOI: 10.1152/ajprenal.00596.2015. PMID: 27465995.
Article
102. Ichimiya T, Yamakawa T, Hirano T, Yokoyama Y, Hayashi Y, Hirayama D, Wagatsuma K, Itoi T, Nakase H. 2020; Autophagy and autophagy-related diseases: a review. Int J Mol Sci. 21:8974. DOI: 10.3390/ijms21238974. PMID: 33255983. PMCID: PMC7729615.
Article
103. Aizawa S, Hoki M, Yamamuro Y. 2017; Lactoferrin promotes autophagy via AMP-activated protein kinase activation through low-density lipoprotein receptor-related protein 1. Biochem Biophys Res Commun. 493:509–513. DOI: 10.1016/j.bbrc.2017.08.160. PMID: 28867180.
Article
104. Zhang Y, Zhang ZN, Li N, Zhao LJ, Xue Y, Wu HJ, Hou JM. 2020; Nbr1-regulated autophagy in Lactoferrin-induced osteoblastic differentiation. Biosci Biotechnol Biochem. 84:1191–1200. DOI: 10.1080/09168451.2020.1737505. PMID: 32141386.
Article
105. Pieczenik SR, Neustadt J. 2007; Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 83:84–92. DOI: 10.1016/j.yexmp.2006.09.008. PMID: 17239370.
Article
106. Nicolson GL. 2014; Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Integr Med (Encinitas). 13:35–43. PMID: 26770107. PMCID: PMC4566449.
107. Lowell BB, Shulman GI. 2005; Mitochondrial dysfunction and type 2 diabetes. Science. 307:384–387. DOI: 10.1126/science.1104343. PMID: 15662004.
Article
108. Kim JA, Wei Y, Sowers JR. 2008; Role of mitochondrial dysfunction in insulin resistance. Circ Res. 102:401–414. DOI: 10.1161/CIRCRESAHA.107.165472. PMID: 18309108. PMCID: PMC2963150.
Article
109. Madamanchi NR, Runge MS. 2007; Mitochondrial dysfunction in atherosclerosis. Circ Res. 100:460–473. DOI: 10.1161/01.RES.0000258450.44413.96. PMID: 17332437.
Article
110. Beal MF. 1998; Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta. 1366:211–223. DOI: 10.1016/S0005-2728(98)00114-5. PMID: 9714810.
Article
111. Ballinger SW. 2005; Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med. 38:1278–1295. DOI: 10.1016/j.freeradbiomed.2005.02.014. PMID: 15855047.
Article
112. Modica-Napolitano JS, Singh KK. 2004; Mitochondrial dysfunction in cancer. Mitochondrion. 4:755–762. DOI: 10.1016/j.mito.2004.07.027. PMID: 16120430.
Article
113. Joe Y, Zheng M, Kim HJ, Uddin MJ, Kim SK, Chen Y, Park J, Cho GJ, Ryter SW, Chung HT. 2015; Cilostazol attenuates murine hepatic ischemia and reperfusion injury via heme oxygenase-dependent activation of mitochondrial biogenesis. Am J Physiol Gastrointest Liver Physiol. 309:G21–G29. DOI: 10.1152/ajpgi.00307.2014. PMID: 25951827.
Article
114. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. 2016; Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 25:119–146. DOI: 10.1089/ars.2016.6665. PMID: 26906267. PMCID: PMC4948213.
Article
115. Maekawa H, Inoue T, Ouchi H, Jao TM, Inoue R, Nishi H, Fujii R, Ishidate F, Tanaka T, Tanaka Y, Hirokawa N, Nangaku M, Inagi R. 2019; Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 29:1261–1273.e6. DOI: 10.1016/j.celrep.2019.09.050. PMID: 31665638.
Article
116. Duann P, Lin PH. 2017; Mitochondria damage and kidney disease. Adv Exp Med Biol. 982:529–551. DOI: 10.1007/978-3-319-55330-6_27. PMID: 28551805. PMCID: PMC8049117.
Article
117. Jiang M, Bai M, Lei J, Xie Y, Xu S, Jia Z, Zhang A. 2020; Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol. 319:F1105–F1116. DOI: 10.1152/ajprenal.00285.2020. PMID: 33073587.
Article
118. Wei PZ, Szeto CC. 2019; Mitochondrial dysfunction in diabetic kidney disease. Clin Chim Acta. 496:108–116. DOI: 10.1016/j.cca.2019.07.005. PMID: 31276635.
Article
119. Güçer S, Talim B, Aşan E, Korkusuz P, Ozen S, Unal S, Kalkanoğlu SH, Kale G, Cağlar M. 2005; Focal segmental glomerulosclerosis associated with mitochondrial cytopathy: report of two cases with special emphasis on podocytes. Pediatr Dev Pathol. 8:710–717. DOI: 10.1007/s10024-005-0058-z. PMID: 16328667.
Article
120. Emma F, Montini G, Parikh SM, Salviati L. 2016; Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol. 12:267–280. DOI: 10.1038/nrneph.2015.214. PMID: 26804019. PMCID: PMC5469549.
Article
121. Park YG, Jeong JK, Lee JH, Lee YJ, Seol JW, Kim SJ, Hur TY, Jung YH, Kang SJ, Park SY. 2013; Lactoferrin protects against prion protein-induced cell death in neuronal cells by preventing mitochondrial dysfunction. Int J Mol Med. 31:325–330. DOI: 10.3892/ijmm.2012.1198. PMID: 23228942.
Article
122. Lin JH, Walter P, Yen TS. 2008; Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 3:399–425. DOI: 10.1146/annurev.pathmechdis.3.121806.151434. PMID: 18039139. PMCID: PMC3653419.
Article
123. Agostinis P. Schwab M, editor. 2011. Endoplasmic reticulum stress. Encyclopedia of cancer. Springer Berlin Heidelberg;Berlin, Heidelberg: p. 1240–1244. DOI: 10.1007/978-3-642-16483-5_1888.
Article
124. Hotamisligil GS. 2010; Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 140:900–917. DOI: 10.1016/j.cell.2010.02.034. PMID: 20303879. PMCID: PMC2887297.
Article
125. Xu C, Bailly-Maitre B, Reed JC. 2005; Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 115:2656–2664. DOI: 10.1172/JCI26373. PMID: 16200199. PMCID: PMC1236697.
Article
126. Zheng M, Zhang Q, Joe Y, Kim SK, Uddin MJ, Rhew H, Kim T, Ryter SW, Chung HT. 2013; Carbon monoxide-releasing molecules reverse leptin resistance induced by endoplasmic reticulum stress. Am J Physiol Endocrinol Metab. 304:E780–E788. DOI: 10.1152/ajpendo.00466.2012. PMID: 23403944.
Article
127. Uddin MJ, Pak ES, Ha H. 2018; Carbon monoxide releasing molecule-2 protects mice against acute kidney injury through inhibition of ER stress. Korean J Physiol Pharmacol. 22:567–575. DOI: 10.4196/kjpp.2018.22.5.567. PMID: 30181703. PMCID: PMC6115348.
Article
128. Gallazzini M, Pallet N. 2018; Endoplasmic reticulum stress and kidney dysfunction. Biol Cell. 110:205–216. DOI: 10.1111/boc.201800019. PMID: 29989181.
Article
129. Inagi R. 2009; Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury. Nephron Exp Nephrol. 112:e1–e9. DOI: 10.1159/000210573. PMID: 19342868.
Article
130. Raghavan S, Malayaperumal S, Mohan V, Balasubramanyam M. 2021; A comparative study on the cellular stressors in mesenchymal stem cells (MSCs) and pancreatic β-cells under hyperglycemic milieu. Mol Cell Biochem. 476:457–469. DOI: 10.1007/s11010-020-03922-4. PMID: 32997307.
Article
131. Jonasch E, Stadler WM, Bukowski RM, Hayes TG, Varadhachary A, Malik R, Figlin RA, inivas S Sr. 2008; Phase 2 trial of talactoferrin in previously treated patients with metastatic renal cell carcinoma. Cancer. 113:72–77. DOI: 10.1002/cncr.23519. PMID: 18484647.
Article
132. Elzoghby AO, Abdelmoneem MA, Hassanin IA, Abd Elwakil MM, Elnaggar MA, Mokhtar S, Fang JY, Elkhodairy KA. 2020; Lactoferrin, a multi-functional glycoprotein: active therapeutic, drug nanocarrier & targeting ligand. Biomaterials. 263:120355. DOI: 10.1016/j.biomaterials.2020.120355. PMID: 32932142. PMCID: PMC7480805.
133. Ishikado A, Imanaka H, Takeuchi T, Harada E, Makino T. 2005; Liposomalization of lactoferrin enhanced it's anti-inflammatory effects via oral administration. Biol Pharm Bull. 28:1717–1721. DOI: 10.1248/bpb.28.1717. PMID: 16141546.
Article
134. Yao X, Bunt C, Cornish J, Quek SY, Wen J. 2013; Oral delivery of lactoferrin: a review. Int J Pept Res Ther. 19:125–134. DOI: 10.1007/s10989-012-9326-8.
Article
135. Knudsen KB, Northeved H, Kumar PE, Permin A, Gjetting T, Andresen TL, Larsen S, Wegener KM, Lykkesfeldt J, Jantzen K, Loft S, Møller P, Roursgaard M. 2015; In vivo toxicity of cationic micelles and liposomes. Nanomedicine. 11:467–477. DOI: 10.1016/j.nano.2014.08.004. PMID: 25168934.
Article
136. Wei X, Shao B, He Z, Ye T, Luo M, Sang Y, Liang X, Wang W, Luo S, Yang S, Zhang S, Gong C, Gou M, Deng H, Zhao Y, Yang H, Deng S, Zhao C, Yang L, Qian Z, et al. 2015; Cationic nanocarriers induce cell necrosis through impairment of Na(+)/K(+)-ATPase and cause subsequent inflammatory response. Cell Res. 25:237–253. DOI: 10.1038/cr.2015.9. PMID: 25613571. PMCID: PMC4650577.
Article
137. Kato K, Tamaki N, Saito Y, Fujimoto T, Sato A. 2010; Amino group PEGylation of bovine lactoferrin by linear polyethylene glycol-p-nitrophenyl active esters. Biol Pharm Bull. 33:1253–1255. DOI: 10.1248/bpb.33.1253. PMID: 20606324.
Article
138. Nojima Y, Suzuki Y, Yoshida K, Abe F, Shiga T, Takeuchi T, Sugiyama A, Shimizu H, Sato A. 2009; Lactoferrin conjugated with 40-kDa branched poly(ethylene glycol) has an improved circulating half-life. Pharm Res. 26:2125–2132. DOI: 10.1007/s11095-009-9925-z. PMID: 19554429.
Article
139. Nojima Y, Suzuki Y, Iguchi K, Shiga T, Iwata A, Fujimoto T, Yoshida K, Shimizu H, Takeuchi T, Sato A. 2008; Development of poly(ethylene glycol) conjugated lactoferrin for oral administration. Bioconjug Chem. 19:2253–2259. DOI: 10.1021/bc800258v. PMID: 18834167.
Article
140. Trif M, Guillen C, Vaughan DM, Telfer JM, Brewer JM, Roseanu A, Brock JH. 2001; Liposomes as possible carriers for lactoferrin in the local treatment of inflammatory diseases. Exp Biol Med (Maywood). 226:559–564. DOI: 10.1177/153537020122600608. PMID: 11395926.
Article
141. Roseanu A, Florian PE, Moisei M, Sima LE, Evans RW, Trif M. 2010; Liposomalization of lactoferrin enhanced its anti-tumoral effects on melanoma cells. Biometals. 23:485–492. DOI: 10.1007/s10534-010-9312-6. PMID: 20191307.
Article
142. Onishi H, Machida Y, Koyama K. 2007; Preparation and in vitro characteristics of lactoferrin-loaded chitosan microparticles. Drug Dev Ind Pharm. 33:641–647. DOI: 10.1080/03639040601085334. PMID: 17613028.
Article
143. Onishi H, Koyama K, Sakata O, Machida Y. 2010; Preparation of chitosan/alginate/calcium complex microparticles loaded with lactoferrin and their efficacy on carrageenan-induced edema in rats. Drug Dev Ind Pharm. 36:879–884. DOI: 10.3109/03639040903567109. PMID: 20345284.
Article
144. Koyama K, Onishi H, Sakata O, Machida Y. 2009; Preparation and in vitro evaluation of chitosan-coated alginate/calcium complex microparticles loaded with fluorescein-labeled lactoferrin. Yakugaku Zasshi. 129:1507–1514. DOI: 10.1248/yakushi.129.1507. PMID: 19952530.
145. Raei M, Rajabzadeh G, Zibaei S, Jafari SM, Sani AM. 2015; Nano-encapsulation of isolated lactoferrin from camel milk by calcium alginate and evaluation of its release. Int J Biol Macromol. 79:669–673. DOI: 10.1016/j.ijbiomac.2015.05.048. PMID: 26038107.
Article
146. Balcão VM, Costa CI, Matos CM, Moutinho CG, Amorim M, Pintado ME, Gomes AP, Vila MM, Teixeira JA. 2013; Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll. 32:425–431. DOI: 10.1016/j.foodhyd.2013.02.004.
Article
147. Conesa C, Calvo M, Sánchez L. 2010; Recombinant human lactoferrin: a valuable protein for pharmaceutical products and functional foods. Biotechnol Adv. 28:831–838. DOI: 10.1016/j.biotechadv.2010.07.002. PMID: 20624450.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr