Anat Cell Biol.  2020 Jun;53(2):228-239. 10.5115/acb.20.014.

The beneficial influence of rhubarb on 5-fluorouracil-induced ileal mucositis and the combined role of aquaporin-4, tumour necrosis factor-α, nuclear factor-kappa B & matrix metalloproteinase-9 in rat model: histological study

Affiliations
  • 1Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
  • 2Department of Pharmacology, Faculty of Pharmacology, Egyptian Russian University, Cairo, Egypt

Abstract

A 5-fluorouracil (5-FU) is used for cancer treatment despite its cytotoxic sequelae on healthy cells, especially the rapid proliferating ones. Intestinal mucositis is one of the most frequent chemotherapeutic debilitating sequelae. Rhubarb (Rh), an ancient herb, is known for its curing effect on gastrointestinal complications. This study aims to detect the role of aquaporin-4 (AQP-4), tumour necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and matrix metalloproteinase-9 (MMP-9) in 5-FU-induced ileal histological and biochemical changes and the potential therapeutic effect of Rh water extract on these changes in rats. A 45 rats were divided into 3 groups; control, 5-FU (single intraperitoneal injection of 150 mg/kg/rat) and Rh-treated (oral 20 mg/kg/day/rat for 8 days). The change in animals’ weight, incidence of diarrhoea and AQP-4 and TNF-α values in ileal homogenates were measured. Ileal sections were subjected to hematoxylin and eosin stain, periodic acid Schiff (PAS)-reaction and MMP-9, NF-κB and AQP-4 immunohistochemical staining. A 5-FU group revealed marked ileal mucosal damage associated with a significant decrease in the mean body weight, AQP-4 level and area percent of PAS and AQP-4 positive reaction. Significant increase in the mean incidence of diarrhoea, TNF-α value and area percent of MMP-9 and NF-κB was detected. These changes were significantly corrected with Rh administration. A 5-FU resulted in severe ileal mucositis through TNF-α, NF-κB, MMP-9, and AQP-4 disturbances. Rh treatment was highly effective in preventing such mucositis.

Keyword

Aqueous rhubarb extract; Intestinal mucositis; Aquaporin-4; Matrix metalloproteinase-9; Nuclear factor-kappa B

Figure

  • Fig. 1 Photomicrograph of H&E stained ileal sections showing: (A–D) control group: normal tissue architecture demonstrating M (Vi, c), muscularis M (curved arrow), submucosa (*) containing PP and ME (ic, ol). The villi are displaying a core of LP and EP formed of simple columnar cells, E, with brush border and G. The intestinal c are separated by LP and lined with E, G, and basally located P. Intra-epithelial L are noted in the epithelial lining of the Vi and the c. (E, F) A 5-FU group: obvious mucosal damage with most of the epithelial cells showing multiple V, some of them seemed with deeply eosinophilic cytoplasm and shrunken darkly stained nuclei (arrow heads), and some appearing swollen and dissolute while others are nearly absent (wavy arrow). Some of the Vi appeared F while others showed areas of mucosal U with complete loss of the epithelial lining. Disorganization of the c and marked mononuclear inflammatory cell In within the mucosal connective tissue are noted. Some of the BV are dilated and/or disrupted. (G, H) Rh-treated group: nearly normal tissue architecture, yet few epithelial cells with cytoplasmic V and few pyknotic nuclei, some inflammatory cellular In and slightly disorganized c are noted. Scale bars=200 μm (A), 100 μm (B, E, G), and 20 μm (C, D, F, H). BV, blood vessels; c, crypts; E, enterocytes; EP, epithelium; F, fused; G, goblet cells; ic, inner circular; In, infiltration; L, lymphocytes; LP, lamina propria; M, mucosa; ME, muscularis externa; ol, outer longitudinal; P, Paneth cells ; PP, Peyer’s patches; Rh, rhubarb; U, ulceration; V, vacuolations; Vi, villi; 5-FU, 5-fluorouracil.

  • Fig. 2 Photomicrograph picture of PAS reaction in the ileal sections of the experimental groups: (A) control group: abundant+ve PAS reaction filling the cytoplasm of the G (wavy arrow), in addition to+ve reaction in the brush border (arrowhead) of the enterocytes. (B) A 5-FU group: minimal+ve PAS reaction in a few G (wavy arrow) and the brush border (arrowhead). (C) Rh-treated group: abundant+ve PAS reaction in the cytoplasm of many G (wavy arrow) and the brush border (arrowhead). Scale bars=20 μm. G, goblet cells; PAS, periodic acid Schiff; 5-FU, 5-fluorouracil.

  • Fig. 3 Photomicrograph of immunohistochemistry in the ileal sections for MMP-9, NF-κB and AQP-4. Anti-MMP-9 immunohistochemistry showing: (A) control group: minimal+ve immunoreaction (arrows) in some cells of the mucosal LP (B) 5-FU group: abundant+ve cytoplasmic immunoreaction (arrows) in the inflammatory cells within the mucosal C.T. and the epithelial cells covering the Vi. (C) Rh-treated group: minimal+ve immunoreaction (arrows) in few inflammatory and epithelial cells. Anti-NF-κB immunohistochemistry showing: (D) control group: few+ve cytoplasmic immunoreactions (arrows) in some cells of the mucosal C.T. (E) A 5-FU group: obvious increased+ve immunoreaction (arrows) involving both the cytoplasm and the nuclei of most of the epithelial and inflammatory cells (F) Rh-treated group: some epithelial and inflammatory cells showing+ve immunoreaction (arrows) which is mainly cytoplasmic with few nuclear immunoreactions. Anti-AQP-4 immunohistochemistry showing: (G) control group: obvious+ve AQP-4 immunoreaction (arrows) mostly in the basolateral regions in addition to the cytoplasm of the enterocytes. (H) A 5-FU group: minimal+ve AQP-4 immunoreaction (arrows) in the epithelial cells (I) Rh-treated group: increased+ve AQP-4 immunoreaction (arrows) mainly in the basolateral regions in addition to the cytoplasm of the enterocytes. Scale bars= 20 μm. AQP-4, aquaporin-4; C.T., connective tissue; LP, lamina propria; MMP-9, matrix metalloproteinase-9; NF-κB, nuclear factor-kappa B; Rh, rhubarb; Vi, villi; 5-FU, 5-fluorouracil.


Reference

1. Terzi S, Özgür A, Mercantepe T, Çeliker M, Tümkaya L, Dursun E. 2017; The effects of astaxanthin on salivary gland damage caused by cisplatin in the rat. Int J Res Med Sci. 5:1410–4. DOI: 10.18203/2320-6012.ijrms20171236.
Article
2. Al-Moula AD, Al-Mashhadane F, Mammdoh JK. 2012; Effects of 6-mercaptopurine on salivary glands in rabbit. Al-Rafidain Dent J. 12:266–73. DOI: 10.33899/rden.2012.65086.
3. Sangild PT, Shen RL, Pontoppidan P, Rathe M. 2018; Animal models of chemotherapy-induced mucositis: translational relevance and challenges. Am J Physiol Gastrointest Liver Physiol. 314:G231–46. DOI: 10.1152/ajpgi.00204.2017. PMID: 29074485.
Article
4. Basile D, Di Nardo P, Corvaja C, Garattini SK, Pelizzari G, Lisanti C, Bortot L, Da Ros L, Bartoletti M, Borghi M, Gerratana L, Lombardi D, Puglisi F. 2019; Mucosal injury during anti-cancer treatment: from pathobiology to bedside. Cancers (Basel). 11:857. DOI: 10.3390/cancers11060857. PMID: 31226812. PMCID: PMC6627284.
Article
5. Lalla RV, Peterson DE. 2006; Treatment of mucositis, including new medications. Cancer J. 12:348–54. DOI: 10.1097/00130404-200609000-00004. PMID: 17034671.
Article
6. Sakai H, Sagara A, Matsumoto K, Hasegawa S, Sato K, Nishizaki M, Shoji T, Horie S, Nakagawa T, Tokuyama S, Narita M. 2013; 5-fluorouracil induces diarrhea with changes in the expression of inflammatory cytokines and aquaporins in mouse intestines. PLoS One. 8:e54788. DOI: 10.1371/journal.pone.0054788. PMID: 23382968. PMCID: PMC3559799.
Article
7. Carneiro-Filho BA, Lima IP, Araujo DH, Cavalcante MC, Carvalho GH, Brito GA, Lima V, Monteiro SM, Santos FN, Ribeiro RA, Lima AA. 2004; Intestinal barrier function and secretion in methotrexate-induced rat intestinal mucositis. Dig Dis Sci. 49:65–72. DOI: 10.1023/B:DDAS.0000011604.45531.2c. PMID: 14992437.
Article
8. Van Sebille YZ, Stansborough R, Wardill HR, Bateman E, Gibson RJ, Keefe DM. 2015; Management of mucositis during chemotherapy: from pathophysiology to pragmatic therapeutics. Curr Oncol Rep. 17:50. DOI: 10.1007/s11912-015-0474-9. PMID: 26384312.
Article
9. Peigen X, Liyi H, Liwei W. 1984; Ethnopharmacologic study of Chinese rhubarb. J Ethnopharmacol. 10:275–93. DOI: 10.1016/0378-8741(84)90016-3. PMID: 6748707.
10. Blaser H, Dostert C, Mak TW, Brenner D. 2016; TNF and ROS crosstalk in inflammation. Trends Cell Biol. 26:249–61. DOI: 10.1016/j.tcb.2015.12.002. PMID: 26791157.
Article
11. Masyuk AI, Marinelli RA, LaRusso NF. 2002; Water transport by epithelia of the digestive tract. Gastroenterology. 122:545–62. DOI: 10.1053/gast.2002.31035. PMID: 11832467.
Article
12. Yeo SI, Ryu HJ, Kim JE, Chun W, Seo CH, Lee BC, Choi IG, Sheen SH, Kang TC. 2011; The effects of electrical shock on the expressions of aquaporin subunits in the rat spinal cords. Anat Cell Biol. 44:50–9. DOI: 10.5115/acb.2011.44.1.50. PMID: 21519549. PMCID: PMC3080008.
Article
13. Zhang D, Yang L, Su W, Zhao Y, Ma X, Zhou H, Xu B, Zhang K, Ma H. 2018; Aquaporin-4 is downregulated in the basolateral membrane of ileum epithelial cells during enterotoxigenic Escherichia coli-induced diarrhea in mice. Front Microbiol. 8:2655. DOI: 10.3389/fmicb.2017.02655. PMID: 29375520. PMCID: PMC5767235.
Article
14. Nauntofte B, Jensen JL. Yamada T, Alpers DH, editors. 1999. Salivary secretion. Textbook of gastroenterology. 3rd ed. Lippincott Williams & Wilkins;Philadelphia: p. 263–78.
15. Dubois A. Brandt LJ, editor. 1999. Control of gastric acid secretion. Clinical practice of gastroenterology. Current Medicine;Philadelphia: p. 180–8.
16. Case RM. Beger HG, Warshaw AL, Buchler MW, Carr-Locke DL, Neoptolemos JP, Russell C, Sarr MG, editors. 1998. Pancreatic exocrine secretion: mechanisms and control. The pancreas. Blackwell Science;Oxford: p. 63–100.
17. Boyer JL, Nathanson MH. Schiff ER, Sorrell MF, Maddrey WC, editors. 2004. Bile formation. Schiff's diseases of the liver. 8th ed. 49:Lippincott-Raven Publishers;Philadelphia: p. 119–45.
18. Aranda-Michel J, Giannella RA. Brandt LJ, editor. 1999. Physiology of the small intestine. Clinical practice of gastroenterology. Current Medicine;Philadelphia: p. 419–27.
19. Laforenza U. 2012; Water channel proteins in the gastrointestinal tract. Mol Aspects Med. 33:642–50. DOI: 10.1016/j.mam.2012.03.001. PMID: 22465691.
Article
20. Pujada A, Walter L, Patel A, Bui TA, Zhang Z, Zhang Y, Denning TL, Garg P. 2017; Matrix metalloproteinase MMP9 maintains epithelial barrier function and preserves mucosal lining in colitis associated cancer. Oncotarget. 8:94650–65. DOI: 10.18632/oncotarget.21841. PMID: 29212256. PMCID: PMC5706902.
Article
21. O'Sullivan S, Gilmer JF, Medina C. 2015; Matrix metalloproteinases in inflammatory bowel disease: an update. Mediators Inflamm. 2015:964131. DOI: 10.1155/2015/964131. PMID: 25948887. PMCID: PMC4408746.
22. Song Y, Wu X, Yang D, Fang F, Meng L, Liu Y, Cui W. 2020; Protective effect of andrographolide on alleviating chronic alcoholic liver disease in mice by inhibiting nuclear factor kappa B and tumor necrosis factor alpha activation. J Med Food. 23:409–15. DOI: 10.1089/jmf.2019.4471. PMID: 32119798.
Article
23. Treede I, Braun A, Jeliaskova P, Giese T, Füllekrug J, Griffiths G, Stremmel W, Ehehalt R. 2009; TNF-alpha-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells. BMC Gastroenterol. 9:53. DOI: 10.1186/1471-230X-9-53. PMID: 19594939. PMCID: PMC2714528.
Article
24. Bajic JE, Eden GL, Lampton LS, Cheah KY, Lymn KA, Pei JV, Yool AJ, Howarth GS. 2016; Rhubarb extract partially improves mucosal integrity in chemotherapy-induced intestinal mucositis. World J Gastroenterol. 22:8322–33. DOI: 10.3748/wjg.v22.i37.8322. PMID: 27729739. PMCID: PMC5055863.
Article
25. Lazăr L, Loghin A, Bud ES, Cerghizan D, Horváth E, Nagy EE. 2015; Cyclooxygenase-2 and matrix metalloproteinase-9 expressions correlate with tissue inflammation degree in periodontal disease. Rom J Morphol Embryol. 56:1441–6. PMID: 26743292.
26. Kiela PR, Ghishan FK. 2016; Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol. 30:145–59. DOI: 10.1016/j.bpg.2016.02.007. PMID: 27086882. PMCID: PMC4956471.
Article
27. Jiang L, Li J, Liu X, Burnstock G, Xiang Z. 2014; Expression of aquaporin-4 water channels in the digestive tract of the guinea pig. J Mol Histol. 45:229–41. DOI: 10.1007/s10735-013-9545-0. PMID: 24122228.
Article
28. Al-Asmari AK, Khan AQ, Al-Asmari SA, Al-Rawi A, Al-Omani S. 2016; Alleviation of 5-fluorouracil-induced intestinal mucositis in rats by vitamin E via targeting oxidative stress and inflammatory markers. J Complement Integr Med. 13:377–85. DOI: 10.1515/jcim-2016-0043. PMID: 27682716.
Article
29. Luster MI, Simeonova PP, Gallucci R, Matheson J. 1999; Tumor necrosis factor alpha and toxicology. Crit Rev Toxicol. 29:491–511. DOI: 10.1080/10408449991349258. PMID: 10521134.
30. Seleme MC, Kosmac K, Jonjic S, Britt WJ. 2017; Tumor necrosis factor alpha-induced recruitment of inflammatory mononuclear cells leads to inflammation and altered brain development in murine cytomegalovirus-infected newborn mice. J Virol. 91:e01983–16. DOI: 10.1128/JVI.01983-16. PMID: 28122986. PMCID: PMC5375689.
Article
31. Yang Y, Jiang G, Zhang P, Fan J. 2015; Programmed cell death and its role in inflammation. Mil Med Res. 2:12. DOI: 10.1186/s40779-015-0039-0. PMID: 26045969. PMCID: PMC4455968.
Article
32. Karin M. 1999; How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene. 18:6867–74. DOI: 10.1038/sj.onc.1203219. PMID: 10602462.
33. Yoshino F, Yoshida A, Nakajima A, Wada-Takahashi S, Takahashi SS, Lee MC. 2013; Alteration of the redox state with reactive oxygen species for 5-fluorouracil-induced oral mucositis in hamsters. PLoS One. 8:e82834. DOI: 10.1371/journal.pone.0082834. PMID: 24376587. PMCID: PMC3869731.
Article
34. Logan RM, Stringer AM, Bowen JM, Gibson RJ, Sonis ST, Keefe DM. 2008; Serum levels of NFkappaB and pro-inflammatory cytokines following administration of mucotoxic drugs. Cancer Biol Ther. 7:1139–45. DOI: 10.4161/cbt.7.7.6207. PMID: 18535404.
35. Chang CT, Ho TY, Lin H, Liang JA, Huang HC, Li CC, Lo HY, Wu SL, Huang YF, Hsiang CY. 2012; 5-Fluorouracil induced intestinal mucositis via nuclear factor-κB activation by transcriptomic analysis and in vivo bioluminescence imaging. PLoS One. 7:e31808. DOI: 10.1371/journal.pone.0031808. PMID: 22412841. PMCID: PMC3296709.
36. Koizumi R, Azuma K, Izawa H, Morimoto M, Ochi K, Tsuka T, Imagawa T, Osaki T, Ito N, Okamoto Y, Saimoto H, Ifuku S. 2017; Oral administration of surface-deacetylated chitin nanofibers and chitosan inhibit 5-fluorouracil-induced intestinal mucositis in mice. Int J Mol Sci. 18:279. DOI: 10.3390/ijms18020279. PMID: 28134832. PMCID: PMC5343815.
Article
37. Soares PM, Mota JM, Souza EP, Justino PF, Franco AX, Cunha FQ, Ribeiro RA, Souza MH. 2013; Inflammatory intestinal damage induced by 5-fluorouracil requires IL-4. Cytokine. 61:46–9. DOI: 10.1016/j.cyto.2012.10.003. PMID: 23107827.
Article
38. Abel E, Ekman T, Warnhammar E, Hultborn R, Jennische E, Lange S. 2005; Early disturbance of microvascular function precedes chemotherapy-induced intestinal injury. Dig Dis Sci. 50:1729–33. DOI: 10.1007/s10620-005-2926-9. PMID: 16133980.
Article
39. Barker N, Clevers H. 2010; Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology. 138:1681–96. DOI: 10.1053/j.gastro.2010.03.002. PMID: 20417836.
Article
40. Paus R, Haslam IS, Sharov AA, Botchkarev VA. 2013; Pathobiology of chemotherapy-induced hair loss. Lancet Oncol. 14:e50–9. DOI: 10.1016/S1470-2045(12)70553-3. PMID: 23369683.
Article
41. Al-Dasooqi N, Gibson RJ, Bowen JM, Logan RM, Stringer AM, Keefe DM. 2010; Matrix metalloproteinases are possible mediators for the development of alimentary tract mucositis in the dark agouti rat. Exp Biol Med (Maywood). 235:1244–56. DOI: 10.1258/ebm.2010.010082. PMID: 20682600.
Article
42. Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, Said HM. 2004; TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol. 286:G367–76. DOI: 10.1152/ajpgi.00173.2003. PMID: 14766535.
43. Wardill HR, Bowen JM, Gibson RJ. 2012; Chemotherapy-induced gut toxicity: are alterations to intestinal tight junctions pivotal? Cancer Chemother Pharmacol. 70:627–35. DOI: 10.1007/s00280-012-1989-5. PMID: 23053271.
Article
44. Bauer AT, Bürgers HF, Rabie T, Marti HH. 2010; Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab. 30:837–48. DOI: 10.1038/jcbfm.2009.248. PMID: 19997118. PMCID: PMC2949161.
Article
45. Gibson RJ, Stringer AM. 2009; Chemotherapy-induced diarrhoea. Curr Opin Support Palliat Care. 3:31–5. DOI: 10.1097/SPC.0b013e32832531bb. PMID: 19365159.
Article
46. Wang KS, Ma T, Filiz F, Verkman AS, Bastidas JA. 2000; Colon water transport in transgenic mice lacking aquaporin-4 water channels. Am J Physiol Gastrointest Liver Physiol. 279:G463–70. DOI: 10.1152/ajpgi.2000.279.2.G463. PMID: 10915657. PMCID: PMC3495185.
Article
47. Sakai H, Sagara A, Matsumoto K, Jo A, Hirosaki A, Takase K, Sugiyama R, Sato K, Ikegami D, Horie S, Matoba M, Narita M. 2014; Neutrophil recruitment is critical for 5-fluorouracil-induced diarrhea and the decrease in aquaporins in the colon. Pharmacol Res. 87:71–9. DOI: 10.1016/j.phrs.2014.05.012. PMID: 24972040.
Article
48. Soares PM, Mota JM, Gomes AS, Oliveira RB, Assreuy AM, Brito GA, Santos AA, Ribeiro RA, Souza MH. 2008; Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution. Cancer Chemother Pharmacol. 63:91–8. DOI: 10.1007/s00280-008-0715-9. PMID: 18324404.
Article
49. Kon R, Tsubota Y, Minami M, Kato S, Matsunaga Y, Kimura H, Murakami Y, Fujikawa T, Sakurai R, Tomimoto R, Machida Y, Ikarashi N, Sugiyama K. 2018; CPT-11-induced delayed diarrhea develops via reduced aquaporin-3 expression in the colon. Int J Mol Sci. 19:170. DOI: 10.3390/ijms19010170. PMID: 29316651. PMCID: PMC5796119.
Article
50. Yasuda M, Kato S, Yamanaka N, Iimori M, Utsumi D, Kitahara Y, Iwata K, Matsuno K, Amagase K, Yabe-Nishimura C, Takeuchi K. 2012; Potential role of the NADPH oxidase NOX1 in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice. Am J Physiol Gastrointest Liver Physiol. 302:G1133–42. DOI: 10.1152/ajpgi.00535.2011. PMID: 22403796.
Article
51. Liu L, Guo Z, Lv Z, Sun Y, Cao W, Zhang R, Liu Z, Li C, Cao S, Mei Q. 2008; The beneficial effect of Rheum tanguticum polysaccharide on protecting against diarrhea, colonic inflammation and ulceration in rats with TNBS-induced colitis: the role of macrophage mannose receptor in inflammation and immune response. Int Immunopharmacol. 8:1481–92. DOI: 10.1016/j.intimp.2008.04.013. PMID: 18790466.
Article
52. Ge H, Tang H, Liang Y, Wu J, Yang Q, Zeng L, Ma Z. 2017; Rhein attenuates inflammation through inhibition of NF-κB and NALP3 inflammasome in vivo and in vitro. Drug Des Devel Ther. 11:1663–71. DOI: 10.2147/DDDT.S133069. PMID: 28652704. PMCID: PMC5472410.
53. Cui YL, Zhang S, Tian ZT, Lin ZF, Chen DC. 2016; Rhubarb antagonizes matrix metalloproteinase-9-induced vascular endothelial permeability. Chin Med J (Engl). 129:1737–43. DOI: 10.4103/0366-6999.185859. PMID: 27411464. PMCID: PMC4960966.
Article
54. Qin Y, Wang JB, Kong WJ, Zhao YL, Yang HY, Dai CM, Fang F, Zhang L, Li BC, Jin C, Xiao XH. 2011; The diarrhoeogenic and antidiarrhoeal bidirectional effects of rhubarb and its potential mechanism. J Ethnopharmacol. 133:1096–102. DOI: 10.1016/j.jep.2010.11.041. PMID: 21112382.
Article
55. Koyama Y, Yamamoto T, Tani T, Nihei K, Kondo D, Funaki H, Yaoita E, Kawasaki K, Sato N, Hatakeyama K, Kihara I. 1999; Expression and localization of aquaporins in rat gastrointestinal tract. Am J Physiol. 276:C621–7. DOI: 10.1152/ajpcell.1999.276.3.C621. PMID: 10069989.
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr