Korean J Radiol.  2020 Jun;21(6):647-659. 10.3348/kjr.2019.0853.

Human Recombinant Apyrase Therapy Protects Against Myocardial Ischemia/Reperfusion Injury and Preserves Left Ventricular Systolic Function in Rats, as Evaluated by 7T Cardiovascular Magnetic Resonance Imaging

Affiliations
  • 1Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
  • 2Department of Radiology, The First Affiliated Hospital of Kunming Medical College, Kunming, China
  • 3APT Therapeutics Inc., St Louis, MO, USA
  • 4Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA

Abstract


Objective
The occurrence of intramyocardial hemorrhage (IMH) and microvascular obstruction (MVO) in myocardial infarction (MI), known as severe ischemia/reperfusion injury (IRI), has been associated with adverse remodeling. APT102, a soluble human recombinant ecto-nucleoside triphosphate diphosphohydrolase-1, can hydrolyze extracellular nucleotides to attenuate their prothrombotic and proinflammatory effects. The purpose of this study was to temporally evaluate the therapeutic effect of APT102 on IRI in rats and to elucidate the evolution of IRI in the acute stage using cardiovascular magnetic resonance imaging (CMRI).
Materials and Methods
Fifty-four rats with MI, induced by ligation of the origin of the left anterior descending coronary artery for 60 minutes, were randomly divided into the APT102 (n = 27) or control (n = 27) group. Intravenous infusion of APT102 (0.3 mg/kg) or placebo was administered 15 minutes before reperfusion, and then 24 hours, 48 hours, 72 hours, and on day 4 after reperfusion. CMRI was performed at 24 hours, 48 hours, 72 hours, and on day 5 post-reperfusion using a 7T system and the hearts were collected for histopathological examination. Cardiac function was quantified using cine imaging and IMH/edema using T2 mapping, and infarct/MVO using late gadolinium enhancement.
Results
The extent of infarction (p < 0.001), edema (p < 0.001), IMH (p = 0.013), and MVO (p = 0.049) was less severe in the APT102 group than in the control group. IMH size at 48 hours was significantly greater than that at 24 hours, 72 hours, and 5 days after reperfusion (all p < 0.001). The left ventricular ejection fraction (LVEF) was significantly greater in the APT102 group than in the control group (p = 0.006). There was a negative correlation between LVEF and IMH (r = -0.294, p = 0.010) and a positive correlation between IMH and MVO (r = 0.392, p < 0.001).
Conclusion
APT102 can significantly alleviate damage to the ischemic myocardium and microvasculature. IMH size peaked at 48 hours post reperfusion and IMH is a downstream consequence of MVO. IMH may be a potential therapeutic target to prevent adverse remodeling in MI.

Keyword

Myocardial ischemia/reperfusion injury; Intramyocardial hemorrhage; Microvascular obstruction; Cardiovascular magnetic resonance; APT102
Full Text Links
  • KJR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2021 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr