Anesth Pain Med.  2018 Jul;13(3):241-247. 10.17085/apm.2018.13.3.241.

Oral endotracheal intubation in pediatric anesthesia

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju, Korea. than@chosun.ac.kr
  • 2Department of Anesthesiology and Pain Medicine, Chosun University School of Medicine, Gwangju, Korea.

Abstract

Pediatric airway management has been both an integral part of routine anesthesia practice and one of its greatest challenges. Traditionally, it has been thought that the pediatric larynx is funnel-shaped, with the narrowest portion being situated at the cricoid cartilage; the choice of endotracheal tube type, size and insertion depth has been based on this concept. Uncuffed endotracheal tubes have typically been advocated for children younger than 8 years. However, it has recently been determined that the pediatric larynx is conical-shaped, with the narrowest portion of the larynx being situated at the rima glottidis. Therefore, there has been a shift in pediatric airway management, and cuffed tubes have been used without significant differences in post-extubation complication rates. It is critical to use the appropriate type and size of endotracheal tube, as well as to ensure proper insertion depth and adequate visualization of airway structures. Here, we introduce and discuss the optimal type, size, and insertion depth of endotracheal tube, and compare direct and video laryngoscopy.

Keyword

Airway management; Anesthesia; Intratracheal intubation; Pediatrics

MeSH Terms

Airway Management
Anesthesia*
Child
Cricoid Cartilage
Glottis
Humans
Intubation, Intratracheal*
Laryngoscopy
Larynx
Pediatrics

Reference

1. Klučka J, Štourač P, Štoudek R, Ťoukálková M, Harazim H, Kosinová M. Controversies in pediatric perioperative airways. Biomed Res Int. 2015; 2015:368761. DOI: 10.1155/2015/368761. PMID: 26759809. PMCID: PMC4670638.
2. Fiadjoe JE, Litman RS, Serber JF, Stricker PA, Coté CJ. The pediatric airway. A practice of anesthesia for infants and children. 6th ed. Coté CJ, Lerman J, Anderson BJ, editors. Philadelphia: Elsevier;2019. p. 297–339.e21.
3. Tobias JD. Pediatric airway anatomy may not be what we thought: implications for clinical practice and the use of cuffed endotracheal tubes. Paediatr Anaesth. 2015; 25:9–19. DOI: 10.1111/pan.12528. PMID: 25243638.
4. Jaeel P, Sheth M, Nguyen J. Ultrasonography for endotracheal tube position in infants and children. Eur J Pediatr. 2017; 176:293–300. DOI: 10.1007/s00431-017-2848-5. PMID: 28091777.
5. Bhardwaj N. Pediatric cuffed endotracheal tubes. J Anaesthesiol Clin Pharmacol. 2013; 29:13–8. DOI: 10.4103/0970-9185.105786. PMID: 23492803. PMCID: PMC3590525.
6. Rafiq M, Wani TM, Moore-Clingenpeel M, Tobias JD. Endotracheal tubes and the cricoid: is there a good fit? Int J Pediatr Otorhinolaryngol. 2016; 85:8–11. DOI: 10.1016/j.ijporl.2016.03.016. PMID: 27240488.
7. Kim HY, Cheon JH, Baek SH, Kim KH, Kim TK. Prediction of endotracheal tube size for pediatric patients from the epiphysis diameter of radius. Korean J Anesthesiol. 2017; 70:52–7. DOI: 10.4097/kjae.2017.70.1.52. PMID: 28184267. PMCID: PMC5296388.
8. Lee JR. Updated review in pediatric airway management. Anesth Pain Med. 2017; 12:195–200. DOI: 10.17085/apm.2017.12.3.195.
9. Krishna SG, Hakim M, Sebastian R, Dellinger HL, Tumin D, Tobias JD. Cuffed endotracheal tubes in children: the effect of the size of the cuffed endotracheal tube on intracuff pressure. Paediatr Anaesth. 2017; 27:494–500. DOI: 10.1111/pan.13099. PMID: 28198583.
10. Altun D, Orhan-Sungur M, Ali A, Özkan-Seyhan T, Sivrikoz N, Çamcı E. The role of ultrasound in appropriate endotracheal tube size selection in pediatric patients. Paediatr Anaesth. 2017; 27:1015–20. DOI: 10.1111/pan.13220. PMID: 28846176.
11. International Liaison Committee on Resuscitation. The International Liaison Committee on Resuscitation (ILCOR) consensus on science with treatment recommendations for pediatric and neonatal patients: pediatric basic and advanced life support. Pediatrics. 2006; 117:e955–77. DOI: 10.1542/peds.2006-0206. PMID: 16618790.
12. De Orange FA, Andrade RG, Lemos A, Borges PS, Figueiroa JN, Kovatsis PG. Cuffed versus uncuffed endotracheal tubes for general anaesthesia in children aged eight years and under. Cochrane Database Syst Rev. 2017; 11:CD011954. DOI: 10.1002/14651858.CD011954.pub2.
13. Weiss M, Balmer C, Dullenkopf A, Knirsch W, Gerber ACh, Bauersfeld U, et al. Intubation depth markings allow an improved positioning of endotracheal tubes in children. Can J Anaesth. 2005; 52:721–6. DOI: 10.1007/BF03016560. PMID: 16103385.
14. Kayashima K, Mizuyama H, Takesue M, Doi T, Imai K, Murashima K. Adjusting pediatric endotracheal tube depths relative to the cricoid by using longitudinal ultrasound images of the saline-inflated cuff in the trachea: two case reports. A A Case Rep. 2017; doi:10.1213/XAA.0000000000000673. [Epub ahead of print]. DOI: 10.1213/XAA.0000000000000673.
15. Komasawa N, Fujiwara S, Miyazaki S, Soen M, Minami T. Comparison of fluid leakage from four different cuffed pediatric endotracheal tubes using a pediatric airway simulation model. Pediatr Int. 2014; 56:634–6. DOI: 10.1111/ped.12373. PMID: 25252057.
16. Hunyady AI, Jonmarker C. Are preformed endotracheal tubes appropriately designed for pediatric patients? Paediatr Anaesth. 2015; 25:929–35. DOI: 10.1111/pan.12691. PMID: 26033518.
17. Kupfer RA, Callaghan BC, Hogikyan ND. Neurogenic vocal fold motion impairment after routine intubation for tonsillectomy in a pediatric patient. J Voice. 2014; 28:112–4. DOI: 10.1016/j.jvoice.2013.05.003. PMID: 24070594.
18. Boensch M, Schick V, Spelten O, Hinkelbein J. Estimation of the optimal tube length: systematic review article on published formulae for infants and children. Anaesthesist. 2016; 65:115–21. DOI: 10.1007/s00101-015-0123-6. PMID: 26696266.
19. Gamble JJ, McKay WP, Wang AF, Yip KA, O'Brien JM, Plewes CE. Three-finger tracheal palpation to guide endotracheal tube depth in children. Paediatr Anaesth. 2014; 24:1050–5. DOI: 10.1111/pan.12562. PMID: 24958069.
20. Moll J, Erb TO, Frei FJ. Assessment of three placement techniques for individualized positioning of the tip of the tracheal tube in children under the age of 4 years. Paediatr Anaesth. 2015; 25:379–85. DOI: 10.1111/pan.12552. PMID: 25308697.
21. Koshy T, Misra S, Chatterjee N, Dharan BS. Accuracy of a chest X-ray-based method for predicting the depth of insertion of endotracheal tubes in pediatric patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2016; 30:947–53. DOI: 10.1053/j.jvca.2016.01.031. PMID: 27238432.
22. Lin MJ, Gurley K, Hoffmann B. Bedside ultrasound for tracheal tube verification in pediatric emergency department and ICU patients: a systematic review. Pediatr Crit Care Med. 2016; 17:e469–76. DOI: 10.1097/PCC.0000000000000907. PMID: 27487913.
23. Kako H, Goykhman A, Ramesh AS, Krishna SG, Tobias JD. Changes in intracuff pressure of a cuffed endotracheal tube during prolonged surgical procedures. Int J Pediatr Otorhinolaryngol. 2015; 79:76–9. DOI: 10.1016/j.ijporl.2014.11.017. PMID: 25487872.
24. Olsen GH, Krishna SG, Jatana KR, Elmaraghy CA, Ruda JM, Tobias JD. Changes in intracuff pressure of cuffed endotracheal tubes while positioning for adenotonsillectomy in children. Paediatr Anaesth. 2016; 26:500–3. DOI: 10.1111/pan.12873. PMID: 26956620.
25. Schneider J, Mulale U, Yamout S, Pollard S, Silver P. Impact of monitoring endotracheal tube cuff leak pressure on postextubation stridor in children. J Crit Care. 2016; 36:173–7. DOI: 10.1016/j.jcrc.2016.06.033. PMID: 27546768.
26. Varghese E, Kundu R. Does the Miller blade truly provide a better laryngoscopic view and intubating conditions than the Macintosh blade in small children? Paediatr Anaesth. 2014; 24:825–9. DOI: 10.1111/pan.12557. PMID: 24690084.
27. Green-Hopkins I, Werner H, Monuteaux MC, Nagler J. Using video-recorded laryngoscopy to evaluate laryngoscopic blade approach and adverse events in children. Acad Emerg Med. 2015; 22:1283–9. DOI: 10.1111/acem.12799. PMID: 26468891.
28. Jagannathan N, Hajduk J, Sohn L, Huang A, Sawardekar A, Albers B, et al. Randomized equivalence trial of the King Vision aBlade videolaryngoscope with the Miller direct laryngoscope for routine tracheal intubation in children <2 yr of age. Br J Anaesth. 2017; 118:932–7. DOI: 10.1093/bja/aex073. PMID: 28549081.
29. Parmekar S, Arnold JL, Anselmo C, Pammi M, Hagan J, Fernandes CJ, et al. Mind the gap: can videolaryngoscopy bridge the competency gap in neonatal endotracheal intubation among pediatric trainees?A randomized controlled study. J Perinatol. 2017; 37:979–83. DOI: 10.1038/jp.2017.72. PMID: 28518132.
30. Riveros R, Sung W, Sessler DI, Sanchez IP, Mendoza ML, Mascha EJ, et al. Comparison of the Truview PCD™and the GlideScope(®) video laryngoscopes with direct laryngoscopy in pediatric patients: a randomized trial. Can J Anaesth. 2013; 60:450–7. DOI: 10.1007/s12630-013-9906-x. PMID: 23435693.
31. Balaban O, Hakim M, Walia H, Tumin D, Lind M, Tobias JD. A comparison of direct laryngoscopy and videolaryngoscopy for endotracheal intubation by inexperienced users: a pediatric manikin study. Pediatr Emerg Care. 2017; doi:10.1097/PEC.0000000000001198. [Epub ahead of print]. DOI: 10.1097/PEC.0000000000001198.
32. Lingappan K, Arnold JL, Shaw TL, Fernandes CJ, Pammi M. Videolaryngoscopy versus direct laryngoscopy for tracheal intubation in neonates. Cochrane Database Syst Rev. 2015; CD009975. DOI: 10.1002/14651858.CD009975.pub2.
Full Text Links
  • APM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2023 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr