Korean J Radiol.  2017 Jun;18(3):476-486. 10.3348/kjr.2017.18.3.476.

Diagnostic Performance of Coronary CT Angiography, Stress Dual-Energy CT Perfusion, and Stress Perfusion Single-Photon Emission Computed Tomography for Coronary Artery Disease: Comparison with Combined Invasive Coronary Angiography and Stress Perfusion Cardiac MRI

Affiliations
  • 1Department of Nuclear Medicine, Konkuk University Medical Center, Research Institute of Biomedical Science, Konkuk University School of Medicine, Seoul 05030, Korea.
  • 2Department of Radiology, Konkuk University Medical Center, Research Institute of Biomedical Science, Konkuk University School of Medicine, Seoul 05030, Korea. ksm9723@yahoo.co.kr
  • 3Department of Internal Medicine, Division of Cardiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea.
  • 4Department of Nuclear Medicine, Seoul Medical Center, Seoul 02053, Korea.

Abstract


OBJECTIVE
To investigate the diagnostic performance of coronary computed tomography angiography (CCTA), stress dual-energy computed tomography perfusion (DE-CTP), stress perfusion single-photon emission computed tomography (SPECT), and the combinations of CCTA with myocardial perfusion imaging (CCTA + DE-CTP and CCTA + SPECT) for identifying coronary artery stenosis that causes myocardial hypoperfusion. Combined invasive coronary angiography (ICA) and stress perfusion cardiac magnetic resonance (SP-CMR) imaging are used as the reference standard.
MATERIALS AND METHODS
We retrospectively reviewed the records of 25 patients with suspected coronary artery disease, who underwent CCTA, DE-CTP, SPECT, SP-CMR, and ICA. The reference standard was defined as ≥ 50% stenosis by ICA, with a corresponding myocardial hypoperfusion on SP-CMR.
RESULTS
For per-vascular territory analysis, the sensitivities of CCTA, DE-CTP, SPECT, CCTA + DE-CTP, and CCTA + SPECT were 96, 96, 68, 93, and 68%, respectively, and specificities were 72, 75, 89, 85, and 94%, respectively. The areas under the receiver operating characteristic curve (AUCs) were 0.84 ± 0.05, 0.85 ± 0.05, 0.79 ± 0.06, 0.89 ± 0.04, and 0.81 ± 0.06, respectively. For per-patient analysis, the sensitivities of CCTA, DE-CTP, SPECT, CCTA + DE-CTP, and CCTA + SPECT were 100, 100, 89, 100, and 83%, respectively; the specificities were 14, 43, 57, 43, and 57%, respectively; and the AUCs were 0.57 ± 0.13, 0.71 ± 0.11, 0.73 ± 0.11, 0.71 ± 0.11, and 0.70 ± 0.11, respectively.
CONCLUSION
The combination of CCTA and DE-CTP enhances specificity without a loss of sensitivity for detecting hemodynamically significant coronary artery stenosis, as defined by combined ICA and SP-CMR.

Keyword

Coronary artery disease; Myocardium; CT angiography; CT perfusion; Adenosine stress; Stress imaging; SPECT; MRI; Dual-energy CT

MeSH Terms

Aged
Area Under Curve
*Computed Tomography Angiography
Coronary Artery Disease/*diagnostic imaging/pathology
Female
Hemodynamics
Humans
Male
Middle Aged
*Myocardial Perfusion Imaging
ROC Curve
Retrospective Studies
Sensitivity and Specificity
*Tomography, Emission-Computed, Single-Photon

Figure

  • Fig. 1 Comparison of different imaging modalities for diagnosis of coronary artery disease. 63-year-old female patient demonstrated left anterior descending artery (LAD) stenosis and right coronary artery (RCA) stent that could not be evaluated on coronary CT angiography (A), ischemia of LAD territory and no significant ischemia of RCA territory on dual-energy CT perfusion (B), ischemia of LAD territory and no significant ischemia of RCA territory on SPECT (C). Combined invasive coronary angiography with stress perfusion cardiac MR confirmed hemodynamically significant stenosis of LAD and no significant stenosis of RCA (D). SPECT = single-photon emission computed tomography


Cited by  3 articles

Comparison of the Diagnostic Accuracies of 1.5T and 3T Stress Myocardial Perfusion Cardiovascular Magnetic Resonance for Detecting Significant Coronary Artery Disease
Jee Young Min, Sung Min Ko, In Young Song, Jung Geun Yi, Hweung Kon Hwang, Je Kyoun Shin
Korean J Radiol. 2018;19(6):1007-1020.    doi: 10.3348/kjr.2018.19.6.1007.

Age of Data in Contemporary Research Articles Published in Representative General Radiology Journals
Ji Hun Kang, Dong Hwan Kim, Seong Ho Park, Jung Hwan Baek
Korean J Radiol. 2018;19(6):1172-1178.    doi: 10.3348/kjr.2018.19.6.1172.

Myocardial Blood Flow Quantified by Low-Dose Dynamic CT Myocardial Perfusion Imaging Is Associated with Peak Troponin Level and Impaired Left Ventricle Function in Patients with ST-Elevated Myocardial Infarction
Jingwei Pan, Mingyuan Yuan, Mengmeng Yu, Yajie Gao, Chengxing Shen, Yining Wang, Bin Lu, Jiayin Zhang
Korean J Radiol. 2019;20(5):709-718.    doi: 10.3348/kjr.2018.0729.


Reference

1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013; 127:e6–e245.
2. Mowatt G, Cummins E, Waugh N, Walker S, Cook J, Jia X, et al. Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess. 2008; 12:iii–iiv. ix–143.
3. Litt HI, Gatsonis C, Snyder B, Singh H, Miller CD, Entrikin DW, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012; 366:1393–1403.
4. Gaemperli O, Schepis T, Valenta I, Koepfli P, Husmann L, Scheffel H, et al. Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology. 2008; 248:414–423.
5. Yoon YE, Lim TH. Current roles and future applications of cardiac CT: risk stratification of coronary artery disease. Korean J Radiol. 2014; 15:4–11.
6. Mowatt G, Vale L, Brazzelli M, Hernandez R, Murray A, Scott N, et al. Systematic review of the effectiveness and costeffectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction. Health Technol Assess. 2004; 8:iii–iiv. 1–207.
7. Lee WW, So Y, Kim KB, Lee DS. Impaired coronary flow reserve is the most important marker of viable myocardium in the myocardial segment-based analysis of dual-isotope gated myocardial perfusion single-photon emission computed tomography. Korean J Radiol. 2014; 15:277–285.
8. Singh H, Patel CD, Mishra S, Bhargava B. Stress-rest thallium-201 myocardial perfusion SPECT pattern in patients with exercise induced left bundle branch block. Nucl Med Mol Imaging. 2014; 48:251–254.
9. Varga-Szemes A, Meinel FG, De Cecco CN, Fuller SR, Bayer RR 2nd, Schoepf UJ. CT myocardial perfusion imaging. AJR Am J Roentgenol. 2015; 204:487–497.
10. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van't Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009; 360:213–224.
11. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012; 367:991–1001.
12. van Nunen LX, Zimmermann FM, Tonino PA, Barbato E, Baumbach A, Engstrøm T, et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet. 2015; 386:1853–1860.
13. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012; 379:453–460.
14. Yoon YE, Hong YJ, Kim HK, Kim JA, Na JO, Yang DH, et al. 2014 Korean guidelines for appropriate utilization of cardiovascular magnetic resonance imaging: a joint report of the Korean Society of Cardiology and the Korean Society of Radiology. Korean J Radiol. 2014; 15:659–688.
15. Desai RR, Jha S. Diagnostic performance of cardiac stress perfusion MRI in the detection of coronary artery disease using fractional flow reserve as the reference standard: a meta-analysis. AJR Am J Roentgenol. 2013; 201:W245–W252.
16. Li M, Zhou T, Yang LF, Peng ZH, Ding J, Sun G. Diagnostic accuracy of myocardial magnetic resonance perfusion to diagnose ischemic stenosis with fractional flow reserve as reference: systematic review and meta-analysis. JACC Cardiovasc Imaging. 2014; 7:1098–1105.
17. Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009; 301:500–507.
18. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010; 362:886–895.
19. Pfisterer M, Brunner-La Rocca HP, Buser PT, Rickenbacher P, Hunziker P, Mueller C, et al. Late clinical events after clopidogrel discontinuation may limit the benefit of drugeluting stents: an observational study of drug-eluting versus bare-metal stents. J Am Coll Cardiol. 2006; 48:2584–2591.
20. Knaapen P, Camici PG, Marques KM, Nijveldt R, Bax JJ, Westerhof N, et al. Coronary microvascular resistance: methods for its quantification in humans. Basic Res Cardiol. 2009; 104:485–498.
21. Ko SM, Park JH, Hwang HK, Song MG. Direct comparison of stress- and rest-dual-energy computed tomography for detection of myocardial perfusion defect. Int J Cardiovasc Imaging. 2014; 30:Suppl 1. 41–53.
22. Schwarz F, Ruzsics B, Schoepf UJ, Bastarrika G, Chiaramida SA, Abro JA, et al. Dual-energy CT of the heart--principles and protocols. Eur J Radiol. 2008; 68:423–433.
23. Ko SM, Choi JW, Song MG, Shin JK, Chee HK, Chung HW, et al. Myocardial perfusion imaging using adenosine-induced stress dual-energy computed tomography of the heart: comparison with cardiac magnetic resonance imaging and conventional coronary angiography. Eur Radiol. 2011; 21:26–35.
24. Ko SM, Choi JW, Hwang HK, Song MG, Shin JK, Chee HK. Diagnostic performance of combined noninvasive anatomic and functional assessment with dual-source CT and adenosineinduced stress dual-energy CT for detection of significant coronary stenosis. AJR Am J Roentgenol. 2012; 198:512–520.
25. Lima RS, Watson DD, Goode AR, Siadaty MS, Ragosta M, Beller GA, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol. 2003; 42:64–70.
26. Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003; 361:374–379.
27. Mouden M, Timmer JR, Ottervanger JP, Reiffers S, Oostdijk AH, Knollema S, et al. Impact of a new ultrafast CZT SPECT camera for myocardial perfusion imaging: fewer equivocal results and lower radiation dose. Eur J Nucl Med Mol Imaging. 2012; 39:1048–1055.
28. Ben Bouallègue F, Roubille F, Lattuca B, Cung TT, Macia JC, Gervasoni R, et al. SPECT myocardial perfusion reserve in patients with multivessel coronary disease: correlation with angiographic findings and invasive fractional flow reserve measurements. J Nucl Med. 2015; 56:1712–1717.
29. Rief M, Zimmermann E, Stenzel F, Martus P, Stangl K, Greupner J, et al. Computed tomography angiography and myocardial computed tomography perfusion in patients with coronary stents: prospective intraindividual comparison with conventional coronary angiography. J Am Coll Cardiol. 2013; 62:1476–1485.
30. Kim YJ, Yong HS, Kim SM, Kim JA, Yang DH, Hong YJ. Guideline for appropriate use of cardiac CT in heart disease. J Korean Soc Radiol. 2014; 70:93–109.
31. Prompona M, Cyran C, Nikolaou K, Bauner K, Reiser M, Huber A. Contrast-enhanced whole-heart coronary MRA using Gadofosveset 3.0 T versus 1.5 T. Acad Radiol. 2010; 17:862–870.
Full Text Links
  • KJR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr