Ann Clin Neurophysiol.  2017 Jul;19(2):93-100. 10.14253/acn.2017.19.2.93.

Brain morphology according to age, sex, and handedness

Affiliations
  • 1Inje University College of Medicine, Busan, Korea.
  • 2Department of Neurology, Inje University College of Medicine, Busan, Korea. smilepkm@hanmail.net

Abstract

In this article, we review the differences of the brain morphology according to age, sex, and handedness. Age is a well-known factor affecting brain morphology. With aging, progressive reduction of brain volume is driven. Sex also has great effects on brain morphology. Although there are some reports that the differences of brain morphology may originate from the differences of weight between the 2 sexes, studies have demonstrated that there are regional differences even after the correction for weight. Handedness has long been regarded as a behavioral marker of functional asymmetry. Although there have been debates about the effect of handedness on brain morphology, previous well-established studies suggest there are differences in some regions according to handedness. Even with the studies done so far, normal brain morphology is not fully understood. Therefore, studies specific for the each ethnic group and standardized methods are needed to establish a more reliable database of healthy subjects' brain morphology.

Keyword

Brain; Magnetic resonance imaging; Demography

MeSH Terms

Aging
Brain*
Demography
Ethnic Groups
Functional Laterality*
Humans
Magnetic Resonance Imaging

Reference

1.Carper RA., Treiber JM., DeJesus SY., Müller RA. Reduced hemispher-ic asymmetry of white matter microstructure in autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2016. 55:1073–1080.
Article
2.Lai MC., Lerch JP., Floris DL., Ruigrok AN., Pohl A., Lombardo MV, et al. Imaging sex/gender and autism in the brain: etiological implications. J Neurosci Res. 2017. 95:380–397.
Article
3.DeMyer MK., Gilmor RL., Hendrie HC., DeMyer WE., Augustyn GT., Jackson RK. Magnetic resonance brain images in schizophren-ic and normal subjects: influence of diagnosis and education. Schizophr Bull. 1988. 14:21–37.
Article
4.Shenton ME., Dickey CC., Frumin M., McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001. 49:1–52.
Article
5.Squarzoni P., Tamashiro-Duran J., Souza Duran FL., Santos LC., Val-lada HP., Menezes PR, et al. Relationship between regional brain volumes and cognitive performance in the healthy aging: an MRI study using voxel-based morphometry. J Alzheimers Dis. 2012. 31:45–58.
Article
6.Good CD., Johnsrude I., Ashburner J., Henson RN., Friston KJ., Fracko-wiak RS. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage. 2001. 14:685–700.
Article
7.Madden DJ., Whiting WL., Huettel SA., White LE., MacFall JR., Proven-zale JM. Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. Neuroimage. 2004. 21:1174–1181.
Article
8.Marstaller L., Williams M., Rich A., Savage G., Burianová H. Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state. Neuroscience. 2015. 290:369–378.
Article
9.Feldman HM., Yeatman JD., Lee ES., Barde LH., Gaman-Bean S. Diffusion tensor imaging: a review for pediatric researchers and clini-cians. J Dev Behav Pediatr. 2010. 31:346–356.
Article
10.Alexander AL., Lee JE., Lazar M., Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007. 4:316–329.
Article
11.Jernigan TL., Archibald SL., Berhow MT., Sowell ER., Foster DS., Hes-selink JR. Cerebral structure on MRI, Part I: Localization of age-relat-ed changes. Biol Psychiatry. 1991. 29:55–67.
Article
12.Resnick SM., Pham DL., Kraut MA., Zonderman AB., Davatzikos C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci. 2003. 23:3295–3301.
Article
13.Curiati PK., Tamashiro JH., Squarzoni P., Duran FL., Santos LC., Wajn-garten M, et al. Brain structural variability due to aging and gender in cognitively healthy Elders: results from the Sao Paulo Ageing and Health study. AJNR Am J Neuroradiol. 2009. 30:1850–1856.
14.Grieve SM., Clark CR., Williams LM., Peduto AJ., Gordon E. Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp. 2005. 25:391–401.
Article
15.Fama R., Sullivan EV. Thalamic structures and associated cognitive functions: relations with age and aging. Neurosci Biobehav Rev. 2015. 54:29–37.
Article
16.Hughes EJ., Bond J., Svrckova P., Makropoulos A., Ball G., Sharp DJ, et al. Regional changes in thalamic shape and volume with increas-ing age. Neuroimage. 2012. 63:1134–1142.
Article
17.Abe O., Yamasue H., Aoki S., Suga M., Yamada H., Kasai K, et al. Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging. 2008. 29:102–116.
Article
18.Amunts K., Jäncke L., Mohlberg H., Steinmetz H., Zilles K. Interhemi-spheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia. 2000. 38:304–312.
Article
19.Ardekani BA., Figarsky K., Sidtis JJ. Sexual dimorphism in the human corpus callosum: an MRI study using the OASIS brain database. Cereb Cortex. 2013. 23:2514–2520.
Article
20.Lüders E., Steinmetz H., Jäncke L. Brain size and grey matter volume in the healthy human brain. Neuroreport. 2002. 13:2371–2374.
Article
21.Sacher J., Neumann J., Okon-Singer H., Gotowiec S., Villringer A. Sexual dimorphism in the human brain: evidence from neuroim-aging. Magn Reson Imaging. 2013. 31:366–375.
Article
22.Abe O., Yamasue H., Yamada H., Masutani Y., Kabasawa H., Sasaki H, et al. Sex dimorphism in gray/white matter volume and diffusion tensor during normal aging. NMR Biomed. 2010. 23:446–458.
Article
23.Narr KL., Bilder RM., Luders E., Thompson PM., Woods RP., Robinson D, et al. Asymmetries of cortical shape: effects of handedness, sex and schizophrenia. Neuroimage. 2007. 34:939–948.
Article
24.DeLacoste-Utamsing C., Holloway RL. Sexual dimorphism in the human corpus callosum. Science. 1982. 216:1431–1432.
Article
25.Luders E., Toga AW., Thompson PM. Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy: the sexual dimorphism of the corpus callosum. Neuroimage. 2014. 84:820–824.
26.Perlaki G., Orsi G., Plozer E., Altbacker A., Darnai G., Nagy SA, et al. Are there any gender differences in the hippocampus volume after head-size correction? A volumetric and voxel-based morphomet-ric study. Neurosci Lett. 2014. 570:119–123.
Article
27.Tan A., Ma W., Vira A., Marwha D., Eliot L. The human hippocampus is not sexually-dimorphic: meta-analysis of structural MRI volumes. Neuroimage. 2016. 124(Pt A):350–366.
Article
28.Xie Y., Chen YA., De Bellis MD. The relationship of age, gender, and IQ with the brainstem and thalamus in healthy children and ado-lescents: a magnetic resonance imaging volumetric study. J Child Neurol. 2012. 27:325–331.
Article
29.Habib M., Gayraud D., Oliva A., Regis J., Salamon G., Khalil R. Effects of handedness and sex on the morphology of the corpus callosum: a study with brain magnetic resonance imaging. Brain Cogn. 1991. 16:41–61.
Article
30.Guadalupe T., Willems RM., Zwiers MP., Arias Vasquez A., Hoogman M., Hagoort P, et al. Differences in cerebral cortical anatomy of left- and right-handers. Front Psychol. 2014. 5:261.
Article
31.Ocklenburg S., Friedrich P., Güntürkün O., Genç E. Voxel-wise grey matter asymmetry analysis in left- and right-handers. Neurosci Lett. 2016. 633:210–214.
Article
32.Annett M. A classification of hand preference by association analysis. Br J Psychol. 1970. 61:303–321.
Article
33.Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 197;9. 97–113.
34.Fazio R., Coenen C., Denney RL. The original instructions for the Edinburgh Handedness Inventory are misunderstood by a majority of participants. Laterality. 2012. 17:70–77.
Article
35.Edlin JM., Leppanen ML., Fain RJ., Hackländer RP., Hanaver-Torrez SD., Lyle KB. On the use (and misuse?) of the Edinburgh Handedness Inventory. Brain Cogn. 2015. 94:44–51.
Article
36.Verdino M., Dingman S. Two measures of laterality in handedness: the Edinburgh Handedness Inventory and the Purdue Pegboard test of manual dexterity. Percept Mot Skills. 1998. 86:476–478.
Article
37.Amunts K., Schlaug G., Schleicher A., Steinmetz H., Dabringhaus A., Roland PE, et al. Asymmetry in the human motor cortex and handedness. Neuroimage. 1996. 4(3 Pt 1):216–222.
Article
38.Hervé PY., Crivello F., Perchey G., Mazoyer B., Tzourio-Mazoyer N. Handedness and cerebral anatomical asymmetries in young adult males. Neuroimage. 2006. 29:1066–1079.
Article
39.Foundas AL., Leonard CM., Heilman KM. Morphologic cerebral asymmetries and handedness. The pars triangularis and planum temporale. Arch Neurol. 1995. 52:501–508.
40.Anstey KJ., Maller JJ., Meslin C., Christensen H., Jorm AF., Wen W, et al. Hippocampal and amygdalar volumes in relation to handedness in adults aged 60-64. Neuroreport. 2004. 15:2825–2829.
41.Ifthikharuddin SF., Shrier DA., Numaguchi Y., Tang X., Ning R., Shibata DK, et al. MR volumetric analysis of the human basal ganglia: nor-mative data. Acad Radiol. 2000. 7:627–634.
Article
42.Peterson BS., Riddle MA., Cohen DJ., Katz LD., Smith JC., Leckman JF. Human basal ganglia volume asymmetries on magnetic resonance images. Magn Reson Imaging. 1993. 11:493–498.
Article
43.Gunning-Dixon FM., Head D., McQuain J., Acker JD., Raz N. Differen-tial aging of the human striatum: a prospective MR imaging study. AJNR Am J Neuroradiol. 1998. 19:1501–1507.
44.Kavaklioglu T., Guadalupe T., Zwiers M., Marquand AF., Onnink M., Shumskaya E, et al. Structural asymmetries of the human cerebel-lum in relation to cerebral cortical asymmetries and handedness. Brain Struct Funct. 2017. 222:1611–1623.
Article
45.Büchel C., Raedler T., Sommer M., Sach M., Weiller C., Koch MA. White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex. 2004. 14:945–951.
Article
46.McKay NS., Iwabuchi SJ., Häberling IS., Corballis MC., Kirk IJ. Atypical white matter microstructure in left-handed individuals. Laterality. 2017. 22:257–267.
Article
47.Cherubini A., Péran P., Caltagirone C., Sabatini U., Spalletta G. Aging of subcortical nuclei: microstructural, mineralization and atrophy modifications measured in vivo using MRI. Neuroimage. 2009. 48:29–36.
Article
Full Text Links
  • ACN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr