Ann Pediatr Endocrinol Metab.  2016 Dec;21(4):193-198. 10.6065/apem.2016.21.4.193.

Transcriptional coordination of hepatic autophagy by nutrient-sensing nuclear receptor PPARα and FXR

Affiliations
  • 1Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Korea. jaemanlee@knu.ac.kr
  • 2BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sicence, Kyungpook National University School of Medicine, Daegu, Korea.

Abstract

Nuclear receptors are in general ligand-dependent transcription factors that control a variety of mammalian physiologies including development, differentiation, proliferation, and homeostasis. Recent studies have found that two nutrient-sensing nuclear receptors, peroxisome proliferator-activated receptor α and farnesoid x receptor, responding to fasting or feeding state, respectively are able to regulate autophagy, an evolutionarily conserved catabolic process involved in lysosomal degradation. In this review, we discuss the role of these nutrient-sensing nuclear receptors in an aspect of transcriptional regulation of autophagy, and how these nuclear receptor-driven transcriptional programs integrate lipophagy, a lipid autophagy with fatty acid oxidation to coordinate hepatic lipid metabolism in the fasted state of the liver.

Keyword

Nuclear receptor; Transcription; Autophagy; Nonalcoholic fatty liver disease; Nonalcoholic steatohepatitis

Figure

  • Fig. 1 Working mechanisms of transcriptional regulation of autophagy by nutrient-sensing NRs and CREB. In the fed state of wild-type mice, FXR activated by its endogenous agonist CDCA (shown in yellow colored circle) binds to DR1 RE as a heterodimeric complex with RXR in the distal regulatory regions of autophagy-related genes. Moreover, activated FXR can also form a piggyback interaction with a CRE-bound CREB in the proximal regulator regions of autophagy-related genes via the dissociation of a coactivator CRTC2. These 2 different mechanisms may account for the transcriptional repression of autophagy-related genes by FXR activation in the fed state of mouse liver. In contrast, fasting-activated PPARα by its endogenous ligands, FFAs or PC (16:0-18:1)(shown in light blue colored circle), binds to DR1 RE via the formation of a heterodimeric complex with RXR in the distal regions of autophagy-related genes. CREB also recruits its coactivator CRTC2 in the proximal regions of autophagy-related genes. These complimentary transcription complexes ensure that fasting leads to turning on the expression of many core autophagy-related genes in the fasted state of mouse livers. Overall, activated PPARα or FXR competes with each other for binding to shared DNA sequences in the distal regions of autophagy-related genes. Additionally, FXR competes with CRTC2 for binding to CREB in the proximal regions of autophagy-related genes. NRs, nuclear receptors; CDCA, chenodeoxycholic acid; FFAs, free fatty acids; PC, phosphatidylcholine; FXR, farnesoid x receptor; RXR, retinoid x receptor; DR1 RE, direct repeat 1 response element; CRE, cAMP response element; CREB, cAMP response element binding protein; PPARα, peroxisome proliferator-activated receptor α; CRTC2, CREB regulated transcription coactivator 2.


Reference

1. Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the united states and the rest of the world. Clin Liver Dis. 2016; 20:205–214. PMID: 27063264.
Article
2. Newton KP, Hou J, Crimmins NA, Lavine JE, Barlow SE, Xanthakos SA, et al. Prevalence of prediabetes and type 2 diabetes in children with nonalcoholic fatty liver disease. JAMA Pediatr. 2016; 170:e161971. PMID: 27478956.
Article
3. Wagner M, Zollner G, Trauner M. Nuclear receptors in liver disease. Hepatology. 2011; 53:1023–1034. PMID: 21319202.
Article
4. Shulman AI, Mangelsdorf DJ. Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med. 2005; 353:604–615. PMID: 16093469.
Article
5. Sonoda J, Pei L, Evans RM. Nuclear receptors: decoding metabolic disease. FEBS Lett. 2008; 582:2–9. PMID: 18023286.
Article
6. Shipman KE, Strange RC, Ramachandran S. Use of fibrates in the metabolic syndrome: A review. World J Diabetes. 2016; 7:74–88. PMID: 26981181.
Article
7. Trivedi PJ, Hirschfield GM, Gershwin ME. Obeticholic acid for the treatment of primary biliary cirrhosis. Expert Rev Clin Pharmacol. 2016; 9:13–26. PMID: 26549695.
Article
8. Ding L, Pang S, Sun Y, Tian Y, Yu L, Dang N. Coordinated actions of FXR and LXR in metabolism: from pathogenesis to pharmacological targets for type 2 diabetes. Int J Endocrinol. 2014; 2014:751859. PMID: 24872814.
Article
9. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001; 294:1866–1870. PMID: 11729302.
Article
10. Evans RM, Mangelsdorf DJ. Nuclear Receptors, RXR, and the Big Bang. Cell. 2014; 157:255–266. PMID: 24679540.
Article
11. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004; 10:355–361. PMID: 15057233.
Article
12. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990; 347:645–650. PMID: 2129546.
Article
13. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007; 5:415–425. PMID: 17550777.
Article
14. Owen BM, Bookout AL, Ding X, Lin VY, Atkin SD, Gautron L, et al. FGF21 contributes to neuroendocrine control of female reproduction. Nat Med. 2013; 19:1153–1156. PMID: 23933983.
Article
15. Zhang Y, Xie Y, Berglund ED, Coate KC, He TT, Katafuchi T, et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife. 2012; 1:e00065. PMID: 23066506.
Article
16. Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014; 20:670–677. PMID: 25130400.
Article
17. Talukdar S, Owen BM, Song P, Hernandez G, Zhang Y, Zhou Y, et al. FGF21 regulates sweet and alcohol preference. Cell Metab. 2016; 23:344–349. PMID: 26724861.
Article
18. Kliewer SA, Mangelsdorf DJ. Fibroblast growth factor 21: from pharmacology to physiology. Am J Clin Nutr. 2010; 91:254S–257S. PMID: 19906798.
Article
19. Bocos C, Göttlicher M, Gearing K, Banner C, Enmark E, Teboul M, et al. Fatty acid activation of peroxisome proliferator-activated receptor (PPAR). J Steroid Biochem Mol Biol. 1995; 53:467–473. PMID: 7626496.
Article
20. Chakravarthy MV, Lodhi IJ, Yin L, Malapaka RR, Xu HE, Turk J, et al. Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell. 2009; 138:476–488. PMID: 19646743.
Article
21. Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, et al. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol. 1995; 15:3012–3022. PMID: 7539101.
Article
22. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest. 1999; 103:1489–1498. PMID: 10359558.
Article
23. Kalaany NY, Mangelsdorf DJ. LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol. 2006; 68:159–191. PMID: 16460270.
Article
24. Chawla A, Saez E, Evans RM. "Don't know much bile-ology". Cell. 2000; 103:1–4. PMID: 11051540.
Article
25. Huang W, Ma K, Zhang J, Qatanani M, Cuvillier J, Liu J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science. 2006; 312:233–236. PMID: 16614213.
Article
26. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014; 509:183–188. PMID: 24670636.
Article
27. Tu H, Okamoto AY, Shan B. FXR, a bile acid receptor and biological sensor. Trends Cardiovasc Med. 2000; 10:30–35. PMID: 11150726.
Article
28. Zhou H, Hylemon PB. Bile acids are nutrient signaling hormones. Steroids. 2014; 86:62–68. PMID: 24819989.
Article
29. Pellicciari R, Fiorucci S, Camaioni E, Clerici C, Costantino G, Maloney PR, et al. 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem. 2002; 45:3569–3572. PMID: 12166927.
Article
30. Maloney PR, Parks DJ, Haffner CD, Fivush AM, Chandra G, Plunket KD, et al. Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem. 2000; 43:2971–2974. PMID: 10956205.
Article
31. Downes M, Verdecia MA, Roecker AJ, Hughes R, Hogenesch JB, Kast-Woelbern HR, et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell. 2003; 11:1079–1092. PMID: 12718892.
Article
32. Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan Y, et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science. 2002; 296:1703–1706. PMID: 11988537.
Article
33. Ricketts ML, Boekschoten MV, Kreeft AJ, Hooiveld GJ, Moen CJ, Müller M, et al. The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors. Mol Endocrinol. 2007; 21:1603–1616. PMID: 17456796.
Article
34. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005; 2:217–225. PMID: 16213224.
Article
35. Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K, et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science. 2011; 331:1621–1624. PMID: 21436455.
Article
36. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015; 313:2263–2273. PMID: 26057287.
37. Bowlus CL. Obeticholic acid for the treatment of primary biliary cholangitis in adult patients: clinical utility and patient selection. Hepat Med. 2016; 8:89–95. PMID: 27621676.
Article
38. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011; 147:728–741. PMID: 22078875.
Article
39. Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010; 330:1344–1348. PMID: 21127245.
Article
40. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010; 140:313–326. PMID: 20144757.
Article
41. Gordon PB, Seglen PO. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun. 1988; 151:40–47. PMID: 3126737.
Article
42. Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic control of autophagy. Cell. 2014; 159:1263–1276. PMID: 25480292.
Article
43. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014; 15:81–94. PMID: 24401948.
Article
44. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008; 451:1069–1075. PMID: 18305538.
Article
45. Jin M, Liu X, Klionsky DJ. SnapShot: selective autophagy. Cell. 2013; 152:368–368.e2. PMID: 23332767.
Article
46. Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol. 2014; 16:495–501. PMID: 24875736.
Article
47. Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol. 2012; 52:381–400. PMID: 22017684.
Article
48. Füllgrabe J, Ghislat G, Cho DH, Rubinsztein DC. Transcriptional regulation of mammalian autophagy at a glance. J Cell Sci. 2016; 129:3059–3066. PMID: 27528206.
Article
49. Füllgrabe J, Klionsky DJ, Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol. 2014; 15:65–74. PMID: 24326622.
Article
50. Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature. 2014; 516:112–115. PMID: 25383539.
Article
51. Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature. 2014; 516:108–111. PMID: 25383523.
Article
52. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature. 2009; 458:1131–1135. PMID: 19339967.
Article
53. Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol. 2012; 2012:282041. PMID: 22536247.
Article
54. Liu K, Czaja MJ. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 2013; 20:3–11. PMID: 22595754.
Article
55. Chennamsetty I, Claudel T, Kostner KM, Baghdasaryan A, Kratky D, Levak-Frank S, et al. Farnesoid X receptor represses hepatic human APOA gene expression. J Clin Invest. 2011; 121:3724–3734. PMID: 21804189.
Article
56. Claudel T, Inoue Y, Barbier O, Duran-Sandoval D, Kosykh V, Fruchart J, et al. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology. 2003; 125:544–555. PMID: 12891557.
Article
57. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science. 2009; 325:473–477. PMID: 19556463.
Article
58. Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol. 2013; 15:647–658. PMID: 23604321.
Article
59. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011; 332:1429–1433. PMID: 21617040.
Article
Full Text Links
  • APEM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr