J Cardiovasc Ultrasound.  2016 Dec;24(4):257-267. 10.4250/jcu.2016.24.4.257.

Multimodality Imaging for Left Ventricular Hypertrophy Severity Grading: A Methodological Review

Affiliations
  • 1Department of Biomedical Sciences, Leiden University Medical Center, Leiden, the Netherlands.
  • 2Cardialysis, Clinical Trial Management & Core Laboratories, Rotterdam, the Netherlands. ernest.spitzer@gmail.com
  • 3Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands.
  • 4Section of Cardiovascular and Interventional Radiology, Department of Bioimaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Abstract

Left ventricular hypertrophy (LVH), defined by an increase in left ventricular mass (LVM), is a common cardiac finding generally caused by an increase in pressure or volume load. Assessing severity of LVH is of great clinical value in terms of prognosis and treatment choices, as LVH severity grades correlate with the risk for presenting cardiovascular events. The three main cardiac parameters for the assessment of LVH are wall thickness, LVM, and LV geometry. Echocardiography, with large availability and low cost, is the technique of choice for their assessment. Consequently, reference values for LVH severity in clinical guidelines are based on this technique. However, cardiac magnetic resonance (CMR) and computed tomography (CT) are increasingly used in clinical practice, providing excellent image quality. Nevertheless, there is no extensive data to support reference values based on these techniques, while comparative studies between the three techniques show different results in wall thickness and LVM measurements. In this paper, we provide an overview of the different methodologies used to assess LVH severity with echocardiography, CMR and CT. We argue that establishing reference values per imaging modality, and possibly indexed to body surface area and classified per gender, ethnicity and age-group, might be essential for the correct classification of LVH severity.

Keyword

Hypertrophy, left ventricular; Echocardiography; Magnetic resonance imaging; Multidetector computed tomography

MeSH Terms

Body Surface Area
Classification
Echocardiography
Hypertrophy, Left Ventricular*
Magnetic Resonance Imaging
Multidetector Computed Tomography
Prognosis
Reference Values

Figure

  • Fig. 1 Methodology for the measurement of the septal and posterior wall thickness, LV mass, and LV diastolic diameter with echo, CMR and CT. Short axis: measurements of septal and posterior wall thickness (yellow lines). 2-chamber, 4-chamber, and short axis views: contour drawing of the LV for three-dimensional LVM measurement (blue lines). Contour drawing may primarily be performed in short axis images (all available) and confirmed with long axis views; or, using primarily long axis views while rotating the LV on its longitudinal axis, and confirmed with short axis views (all available). LV (end-)diastolic diameter (green lines). Echo: echocardiography, CT: computed tomography, CMR: cardiac magnetic resonance, LV: left ventricle, LVM: left ventricular mass.

  • Fig. 2 Calculation of LV mass with an echocardiographic linear method. LV: left ventricle.

  • Fig. 3 LV geometry patterns. RWT = 2 × posterior wall thickness / LV internal diameter at end diastole. LVMi = LVM / BSA. Normal = green, abnormal = red. Abnormal RWT is defined as > 0.42, abnormal LVMi is > 115 g/m2 (men), and > 95 g/m2 (women).18) RWT: relative wall thickness, LVMi: left ventricular mass index, LV: left ventricle, LVM: left ventricular mass, BSA: body surface area.


Cited by  1 articles

Assessment of Left Ventricular Myocardial Diseases with Cardiac Computed Tomography
Sung Min Ko, Tae Hoon Kim, Eun Ju Chun, Jin Young Kim, Sung Ho Hwang
Korean J Radiol. 2019;20(3):333-351.    doi: 10.3348/kjr.2018.0280.


Reference

1. Cuspidi C, Sala C, Negri F, Mancia G, Morganti A. Italian Society of Hypertension. Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies. J Hum Hypertens. 2012; 26:343–349.
2. Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertens. 2008; 21:500–508.
3. Cuspidi C, Rescaldani M, Sala C, Grassi G. Left-ventricular hypertrophy and obesity: a systematic review and meta-analysis of echocardiographic studies. J Hypertens. 2014; 32:16–25.
4. de Simone G, Izzo R, De Luca N, Gerdts E. Left ventricular geometry in obesity: is it what we expect? Nutr Metab Cardiovasc Dis. 2013; 23:905–912.
5. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ. National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National High Blood Pressure Education Program Coordinating Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003; 289:2560–2572.
6. Marwick TH, Gillebert TC, Aurigemma G, Chirinos J, Derumeaux G, Galderisi M, Gottdiener J, Haluska B, Ofili E, Segers P, Senior R, Tapp RJ, Zamorano JL. Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). J Am Soc Echocardiogr. 2015; 28:727–754.
7. Rader F, Sachdev E, Arsanjani R, Siegel RJ. Left ventricular hypertrophy in valvular aortic stenosis: mechanisms and clinical implications. Am J Med. 2015; 128:344–352.
8. Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC). European Association for Cardio-Thoracic Surgery (EACTS). Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H, Borger MA, Carrel TP, De Bonis M, Evangelista A, Falk V, Iung B, Lancellotti P, Pierard L, Price S, Schäfers HJ, Schuler G, Stepinska J, Swedberg K, Takkenberg J, Von Oppell UO, Windecker S, Zamorano JL, Zembala M. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012; 33:2451–2496.
9. Bekeredjian R, Grayburn PA. Valvular heart disease: aortic regurgitation. Circulation. 2005; 112:125–134.
10. Gaasch WH, Meyer TE. Left ventricular response to mitral regurgitation: implications for management. Circulation. 2008; 118:2298–2303.
11. Authors/Task Force members. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G, Mahrholdt H, McKenna WJ, Mogensen J, Nihoyannopoulos P, Nistri S, Pieper PG, Pieske B, Rapezzi C, Rutten FH, Tillmanns C, Watkins H. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014; 35:2733–2779.
12. Linhart A, Elliott PM. The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart. 2007; 93:528–535.
13. Charron P, Arad M, Arbustini E, Basso C, Bilinska Z, Elliott P, Helio T, Keren A, McKenna WJ, Monserrat L, Pankuweit S, Perrot A, Rapezzi C, Ristic A, Seggewiss H, van Langen I, Tavazzi L. European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2010; 31:2715–2726.
14. Yilmaz A, Sechtem U. Diagnostic approach and differential diagnosis in patients with hypertrophied left ventricles. Heart. 2014; 100:662–671.
15. Batterham AM, George KP, Birch KM, Pennell DJ, Myerson SG. Growth of left ventricular mass with military basic training in army recruits. Med Sci Sports Exerc. 2011; 43:1295–1300.
16. Naylor LH, George K, O'Driscoll G, Green DJ. The athlete's heart: a contemporary appraisal of the ‘Morganroth hypothesis’. Sports Med. 2008; 38:69–90.
17. Zalawadiya SK, Gunasekaran PC, Bavishi CP, Veeranna V, Panaich S, Afonso L. Left ventricular hypertrophy and risk reclassification for coronary events in multi-ethnic adults. Eur J Prev Cardiol. 2015; 22:673–679.
18. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015; 16:233–270.
19. Lawrence JP. Physics and instrumentation of ultrasound. Crit Care Med. 2007; 35:8 Suppl. S314–S322.
20. Klitsie LM, Roest AA, Blom NA, ten Harkel AD. Ventricular performance after surgery for a congenital heart defect as assessed using advanced echocardiography: from doppler flow to 3D echocardiography and speckle-tracking strain imaging. Pediatr Cardiol. 2014; 35:3–15.
21. Hoey ET, Ganeshan A. Multi-detector CT angiography of the aortic valve-part 1: anatomy, technique and systematic approach to interpretation. Quant Imaging Med Surg. 2014; 4:265–272.
22. Te Riele AS, Tandri H, Sanborn DM, Bluemke DA. Noninvasive multimodality imaging in ARVD/C. JACC Cardiovasc Imaging. 2015; 8:597–611.
23. Kusunose K, Kwon DH, Motoki H, Flamm SD, Marwick TH. Comparison of three-dimensional echocardiographic findings to those of magnetic resonance imaging for determination of left ventricular mass in patients with ischemic and non-ischemic cardiomyopathy. Am J Cardiol. 2013; 112:604–611.
24. Chang SA, Kim HK, Lee SC, Kim EY, Hahm SH, Kwon OM, Park SW, Choe YH, Oh JK. Assessment of left ventricular mass in hypertrophic cardiomyopathy by real-time three-dimensional echocardiography using single-beat capture image. J Am Soc Echocardiogr. 2013; 26:436–442.
25. Shimada YJ, Shiota T. Meta-analysis of accuracy of left ventricular mass measurement by three-dimensional echocardiography. Am J Cardiol. 2012; 110:445–452.
26. Mizukoshi K, Takeuchi M, Nagata Y, Addetia K, Lang RM, Akashi YJ, Otsuji Y. Normal values of left ventricular mass index assessed by transthoracic three-dimensional echocardiography. J Am Soc Echocardiogr. 2016; 29:51–61.
27. Geva T. Magnetic resonance imaging: historical perspective. J Cardiovasc Magn Reson. 2006; 8:573–580.
28. Young AA, Prince JL. Cardiovascular magnetic resonance: deeper insights through bioengineering. Annu Rev Biomed Eng. 2013; 15:433–461.
29. Goldman LW. Principles of CT and CT technology. J Nucl Med Technol. 2007; 35:115–128. quiz 129-30.
30. Sun Z. Coronary CT angiography with prospective ECG-triggering: an effective alternative to invasive coronary angiography. Cardiovasc Diagn Ther. 2012; 2:28–37.
31. Authors/Task Force members. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, Filippatos G, Hamm C, Head SJ, Jüni P, Kappetein AP, Kastrati A, Knuuti J, Landmesser U, Laufer G, Neumann FJ, Richter DJ, Schauerte P, Sousa Uva M, Stefanini GG, Taggart DP, Torracca L, Valgimigli M, Wijns W, Witkowski A. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014; 35:2541–2619.
32. Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G, Hink U, Schuchlenz HW, Feuchtner G, Gilard M, Andreini D, Jensen JM, Hadamitzky M, Chiswell K, Cyr D, Wilk A, Wang F, Rogers C, De Bruyne B. PLATFORM Investigators. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR (CT): outcome and resource impacts study. Eur Heart J. 2015; 36:3359–3367.
33. Gonçalves Pde A, Rodríguez-Granillo GA, Spitzer E, Suwannasom P, Loewe C, Nieman K, Garcia-Garcia HM. Functional evaluation of coronary disease by CT angiography. JACC Cardiovasc Imaging. 2015; 8:1322–1335.
34. Gebker R, Mirelis JG, Jahnke C, Hucko T, Manka R, Hamdan A, Schnackenburg B, Fleck E, Paetsch I. Influence of left ventricular hypertrophy and geometry on diagnostic accuracy of wall motion and perfusion magnetic resonance during dobutamine stress. Circ Cardiovasc Imaging. 2010; 3:507–514.
35. Budoff MJ, Ahmadi N, Sarraf G, Gao Y, Chow D, Flores F, Mao SS. Determination of left ventricular mass on cardiac computed tomographic angiography. Acad Radiol. 2009; 16:726–732.
36. Salton CJ, Chuang ML, O'Donnell CJ, Kupka MJ, Larson MG, Kissinger KV, Edelman RR, Levy D, Manning WJ. Gender differences and normal left ventricular anatomy in an adult population free of hypertension. A cardiovascular magnetic resonance study of the Framingham Heart Study Offspring cohort. J Am Coll Cardiol. 2002; 39:1055–1060.
37. Stolzmann P, Scheffel H, Trindade PT, Plass AR, Husmann L, Leschka S, Genoni M, Marincek B, Kaufmann PA, Alkadhi H. Left ventricular and left atrial dimensions and volumes: comparison between dual-source CT and echocardiography. Invest Radiol. 2008; 43:284–289.
38. Barbieri A, Bursi F, Mantovani F, Valenti C, Quaglia M, Berti E, Marino M, Modena MG. Left ventricular hypertrophy reclassification and death: application of the Recommendation of the American Society of Echocardiography/European Association of Echocardiography. Eur Heart J Cardiovasc Imaging. 2012; 13:109–117.
39. Bogaert J, Dymarkowski S, Taylor AM. Clinical Cardiac MRI. Berlin: Springer Science & Business Media;2004.
40. Terarecon.com [Internet]. Clinical Packages: CT Cardiac 2016. cited 2016 Oct 24. Available from: http://www.terarecon.com/advanced-visualization/ct-cardiac.
41. Bang CN, Gerdts E, Aurigemma GP, Boman K, de Simone G, Dahlöf B, Køber L, Wachtell K, Devereux RB. Four-group classification of left ventricular hypertrophy based on ventricular concentricity and dilatation identifies a low-risk subset of eccentric hypertrophy in hypertensive patients. Circ Cardiovasc Imaging. 2014; 7:422–429.
42. Garg S, Drazner MH. Refining the classification of left ventricular hypertrophy to provide new insights into the progression from hypertension to heart failure. Curr Opin Cardiol. 2016; 31:387–393.
43. Bicudo LS, Tsutsui JM, Shiozaki A, Rochitte CE, Arteaga E, Mady C, Ramires JA, Mathias W Jr. Value of real time three-dimensional echocardiography in patients with hypertrophic cardiomyopathy: comparison with two-dimensional echocardiography and magnetic resonance imaging. Echocardiography. 2008; 25:717–726.
44. Malagò R, Tavella D, Mantovani W, D’Onofrio M, Caliari G, Pezzato A, Nicolì L, Benussi P, Pozzi Mucelli R. MDCT coronary angiography vs 2D echocardiography for the assessment of left ventricle functional parameters. Radiol Med. 2011; 116:505–520.
45. Butler J, Shapiro MD, Jassal DS, Neilan TG, Nichols J, Ferencik M, Brady TJ, Hoffmann U, Cury RC. Comparison of multidetector computed tomography and two-dimensional transthoracic echocardiography for left ventricular assessment in patients with heart failure. Am J Cardiol. 2007; 99:247–249.
46. Puntmann VO, Gebker R, Duckett S, Mirelis J, Schnackenburg B, Graefe M, Razavi R, Fleck E, Nagel E. Left ventricular chamber dimensions and wall thickness by cardiovascular magnetic resonance: comparison with transthoracic echocardiography. Eur Heart J Cardiovasc Imaging. 2013; 14:240–246.
47. Rickers C, Wilke NM, Jerosch-Herold M, Casey SA, Panse P, Panse N, Weil J, Zenovich AG, Maron BJ. Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation. 2005; 112:855–861.
48. Zhao L, Ma X, Feuchtner GM, Zhang C, Fan Z. Quantification of myocardial delayed enhancement and wall thickness in hypertrophic cardiomyopathy: multidetector computed tomography versus magnetic resonance imaging. Eur J Radiol. 2014; 83:1778–1785.
49. Zhao L, Ma X, Ge H, Zhang C, Wang Z, Teraoka K, Fan Z. Diagnostic performance of computed tomography for detection of concomitant coronary disease in hypertrophic cardiomyopathy. Eur Radiol. 2015; 25:767–775.
50. Kanza RE, Higashino H, Kido T, Kurata A, Saito M, Sugawara Y, Mochizuki T. Quantitative assessment of regional left ventricular wall thickness and thickening using 16 multidetector-row computed tomography: comparison with cine magnetic resonance imaging. Radiat Med. 2007; 25:119–126.
51. Fischbach R, Juergens KU, Ozgun M, Maintz D, Grude M, Seifarth H, Heindel W, Wichter T. Assessment of regional left ventricular function with multidetector-row computed tomography versus magnetic resonance imaging. Eur Radiol. 2007; 17:1009–1017.
52. Kühl HP, Hanrath P, Franke A. M-mode echocardiography overestimates left ventricular mass in patients with normal left ventricular shape: a comparative study using three-dimensional echocardiography. Eur J Echocardiogr. 2003; 4:312–319.
53. Bezante GP, Chen X, Molinari G, Valbusa A, Deferrari L, Sebastiani V, Yokoyama N, Steinmetz S, Barsotti A, Schwarz KQ. Left ventricular myocardial mass determination by contrast enhanced colour Doppler compared with magnetic resonance imaging. Heart. 2005; 91:38–43.
54. Gruszczyńska K, Krzych LJ, Gołba KS, Biernat J, Roleder T, Deja MA, Ulbrych P, Malinowski M, Janusiewicz P, Woś S, Baron J. Statistical agreement of left ventricle measurements using cardiac magnetic resonance and 2D echocardiography in ischemic heart failure. Med Sci Monit. 2012; 18:MT19–MT25.
55. Chuang ML, Beaudin RA, Riley MF, Mooney MG, Mannin WJ, Douglas PS, Hibberd MG. Three-dimensional echocardiographic measurement of left ventricular mass: comparison with magnetic resonance imaging and two-dimensional echocardiographic determinations in man. Int J Card Imaging. 2000; 16:347–357.
56. Greupner J, Zimmermann E, Grohmann A, Dübel HP, Althoff TF, Borges AC, Rutsch W, Schlattmann P, Hamm B, Dewey M. Head-to-head comparison of left ventricular function assessment with 64-row computed tomography, biplane left cineventriculography, and both 2- and 3-dimensional transthoracic echocardiography: comparison with magnetic resonance imaging as the reference standard. J Am Coll Cardiol. 2012; 59:1897–1907.
57. Faletti R, Gatti M, Salizzoni S, Bergamasco L, Bonamini R, Garabello D, Marra WG, La Torre M, Morello M, Veglia S, Fonio P, Rinaldi M. Cardiovascular magnetic resonance as a reliable alternative to cardiovascular computed tomography and transesophageal echocardiography for aortic annulus valve sizing. Int J Cardiovasc Imaging. 2016; 32:1255–1263.
58. Mongeon FP, Marcotte F, Terrone DG. Multimodality noninvasive imaging of thoracic aortic aneurysms: time to standardize? Can J Cardiol. 2016; 32:48–59.
Full Text Links
  • JCU
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr