Korean J Gastroenterol.  2016 Sep;68(3):143-147. 10.4166/kjg.2016.68.3.143.

Current Status of Translational Research on Constipation

Affiliations
  • 1Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea. seenae99@dsmc.or.kr

Abstract

Constipation is one of the most common gastrointestinal disorders with a prevalence up to 16.5% in the general population. It is frequently multifactorial and the pathophysiologic mechanism of constipation is not fully understood. Many preclinical studies of constipation have used animal models. Translational research using these animal models is essential to the investigation of neurogenic and myogenic mechanisms of colon, and to the estimation of the clinical efficacy of new drugs. In this review, we discuss some of the current translational research projects on constipation using animal models.

Keyword

Constipation; Translational medical research; Gastrointestinal motility; Colon

MeSH Terms

Colon
Constipation*
Gastrointestinal Motility
Models, Animal
Prevalence
Translational Medical Research*
Treatment Outcome

Reference

References

1. Jun DW, Park HY, Lee OY, et al. A population-based study on bowel habits in a Korean community: prevalence of functional constipation and self-reported constipation. Dig Dis Sci. 2006; 51:1471–1477.
Article
2. Suares NC, Ford AC. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: systematic review and metaanalysis. Am J Gastroenterol. 2011; 106:1582–1591. quiz 1581, 1592.
Article
3. Johanson JF, Kralstein J. Chronic constipation: a survey of the patient perspective. Aliment Pharmacol Ther. 2007; 25:599–608.
Article
4. Lembo A, Camilleri M. Chronic constipation. N Engl J Med. 2003; 349:1360–1368.
Article
5. Korean Society of Neurogastroenterology and Motility. Constipation. 1st ed.Seoul: Medbook;2013.
6. Zarate N, Spencer NJ. Chronic constipation: lessons from animal studies. Best Pract Res Clin Gastroenterol. 2011; 25:59–71.
Article
7. El-Salhy M, Sandström O, Holmlund F. Age-induced changes in the enteric nervous system in the mouse. Mech Ageing Dev. 1999; 107:93–103.
Article
8. Smits GJ, Lefebvre RA. Influence of age on cholinergic and inhibitory nonadrenergic noncholinergic responses in the rat ileum. Eur J Pharmacol. 1996; 303:79–86.
Article
9. Peck CJ, Samsuria SD, Harrington AM, King SK, Hutson JM, Southwell BR. Fall in density, but not number of myenteric neurons and circular muscle nerve fibres in guinea-pig colon with ageing. Neurogastroenterol Motil. 2009; 21:1075–1090.
Article
10. Sanders KM, Koh SD, Ward SM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006; 68:307–343.
Article
11. Dickens EJ, Hirst GD, Tomita T. Identification of rhythmically active cells in guinea-pig stomach. J Physiol. 1999; 514:515–531.
Article
12. Knowles CH, De Giorgio R, Kapur RP, et al. The London Classification of gastrointestinal neuromuscular pathology: report on behalf of the Gastro 2009 International Working Group. Gut. 2010; 59:882–887.
Article
13. Rae MG, Fleming N, McGregor DB, Sanders KM, Keef KD. Control of motility patterns in the human colonic circular muscle layer by pacemaker activity. J Physiol. 1998; 510:309–320.
Article
14. Bywater RA, Small RC, Taylor GS. Neurogenic slow depolarizations and rapid oscillations in the membrane potential of circular muscle of mouse colon. J Physiol. 1989; 413:505–519.
Article
15. Bywater RA, Spencer NJ, Fida R, Taylor GS. Second-, minute- and hour-metronomes of intestinal pacemakers. Clin Exp Pharmacol Physiol. 1998; 25:857–861.
Article
16. Spencer NJ. Control of migrating motor activity in the colon. Curr Opin Pharmacol. 2001; 1:604–610.
Article
17. Dickson EJ, Spencer NJ, Hennig GW, et al. An enteric occult reflex underlies accommodation and slow transit in the distal large bowel. Gastroenterology. 2007; 132:1912–1924.
Article
18. Suo H, Zhao X, Qian Y, et al. Therapeutic effect of activated car-bon-induced constipation mice with Lactobacillus fermentum Suo on treatment. Int J Mol Sci. 2014; 15:21875–21895.
Article
19. Hou ML, Chang LW, Lin CH, Lin LC, Tsai TH. Comparative pharmacokinetics of rhein in normal and loperamide-induced constipated rats and microarray analysis of drug-metabolizing genes. J Ethnopharmacol. 2014; 155:1291–1299.
Article
20. Neri F, Cavallari G, Tsivian M, et al. Effect of colic vein ligature in rats with loperamide-induced constipation. J Biomed Biotechnol. 2012; 2012:896162.
Article
21. Zhou M, Jia P, Chen J, et al. Laxative effects of Salecan on normal and two models of experimental constipated mice. BMC Gastroenterol. 2013; 13:52.
Article
22. Kon R, Ikarashi N, Hayakawa A, et al. Morphine-induced constipation develops with increased aquaporin-3 expression in the colon via increased serotonin secretion. Toxicol Sci. 2015; 145:337–347.
Article
23. Li Z, Zheng H, Li GB, Zhi H, Yuan WT. Alterations of Cajal cells in the colon of slow transit constipation rats. Zhonghua Wei Chang Wai Ke Za Zhi. 2013; 16:777–779.
24. Hegde SS, Eglen RM. Peripheral 5-HT4 receptors. FASEB J. 1996; 10:1398–1407.
25. Buchheit KH, Buhl T. Prokinetic benzamides stimulate peristaltic activity in the isolated guinea pig ileum by activation of 5-HT4 receptors. Eur J Pharmacol. 1991; 205:203–208.
Article
26. Taniyama K, Makimoto N, Furuichi A, et al. Functions of peripheral 5-hydroxytryptamine receptors, especially 5-hydroxytrypt-amine4 receptor, in gastrointestinal motility. J Gastroenterol. 2000; 35:575–582.
27. Briejer MR, Akkermans LM, Schuurkes JA. Gastrointestinal prokinetic benzamides: the pharmacology underlying stimulation of motility. Pharmacol Rev. 1995; 47:631–651.
28. McLean PG, Coupar IM, Molenaar P. A comparative study of functional 5-HT4 receptors in human colon, rat oesophagus and rat ileum. Br J Pharmacol. 1995; 115:47–56.
Article
29. Reeves JJ, Bunce KT, Humphrey PP. Investigation into the 5-hy-droxytryptamine receptor mediating smooth muscle relaxation in the rat oesophagus. Br J Pharmacol. 1991; 103:1067–1072.
Article
30. Buchheit KH, Buhl T. Stimulant effects of 5-hydroxytryptamine on guinea pig stomach preparations in vitro. Eur J Pharmacol. 1994; 262:91–97.
31. Craig DA, Clarke DE. Pharmacological characterization of a neuronal receptor for 5-hydroxytryptamine in guinea pig ileum with properties similar to the 5-hydroxytryptamine receptor. J Pharmacol Exp Ther. 1990; 252:1378–1386.
32. Kilbinger H, Wolf D. Effects of 5-HT4 receptor stimulation on basal and electrically evoked release of acetylcholine from guinea-pig myenteric plexus. Naunyn Schmiedebergs Arch Pharmacol. 1992; 345:270–275.
Article
33. Briejer MR, Schuurkes JA. 5-HT3 and 5-HT4 receptors and cholinergic and tachykininergic neurotransmission in the guinea-pig proximal colon. Eur J Pharmacol. 1996; 308:173–180.
Article
34. Prins NH, Akkermans LM, Lefebvre RA, Schuurkes JA. 5-HT(4) receptors on cholinergic nerves involved in contractility of canine and human large intestine longitudinal muscle. Br J Pharmacol. 2000; 131:927–932.
Article
35. Prins NH, Van Haselen JF, Lefebvre RA, Briejer MR, Akkermans LM, Schuurkes JA. Pharmacological characterization of 5-HT4 receptors mediating relaxation of canine isolated rectum circular smooth muscle. Br J Pharmacol. 1999; 127:1431–1437.
Article
36. Nagakura Y, Ito H, Kiso T, Naitoh Y, Miyata K. The selective 5-hy-droxytryptamine (5-HT)4-receptor agonist RS67506 enhances lower intestinal propulsion in mice. Jpn J Pharmacol. 1997; 74:209–212.
Article
37. Poen AC, Felt-Bersma RJ, Van Dongen PA, Meuwissen SG. Effect of prucalopride, a new enterokinetic agent, on gastrointestinal transit and anorectal function in healthy volunteers. Aliment Pharmacol Ther. 1999; 13:1493–1497.
Article
38. Nagakura Y, Akuzawa S, Miyata K, et al. Pharmacological properties of a novel gastrointestinal prokinetic benzamide selective for human 5-HT4 receptor versus human 5-HT3 receptor. Pharmacol Res. 1999; 39:375–382.
39. Furuichi A, Makimoto N, Ogishima M, et al. In vivo microdialysis assessment of nerve-stimulated contractions associated with increased acetylcholine release in the dog intestine. Jpn J Pharmacol. 1999; 79:109–112.
40. Bingham S, King BF, Rushant B, Smith MI, Gaster L, Sanger GJ. Antagonism by SB 204070 of 5-HT-evoked contractions in the dog stomach: an in-vivo model of 5-HT4 receptor function. J Pharm Pharmacol. 1995; 47:219–222.
Article
41. Taniyama K, Nakayama S, Takeda K, et al. Cisapride stimulates motility of the intestine via the 5-hydroxytryptamine receptors. J Pharmacol Exp Ther. 1991; 258:1098–1104.
42. Schuurkes JA, Van Nueten JM, Van Daele PG, Reyntjens AJ, Janssen PA. Motor-stimulating properties of cisapride on isolated gastrointestinal preparations of the guinea pig. J Pharmacol Exp Ther. 1985; 234:775–783.
43. Yoshida N, Omoya H, Oka M, Furukawa K, Ito T, Karasawa T. AS-4370, a novel gastrokinetic agent free of dopamine D2 receptor antagonist properties. Arch Int Pharmacodyn Ther. 1989; 300:51–67.
44. Sakurai-Yamashita Y, Yamashita K, Kanematsu T, Taniyama K. Localization of the 5-HT(4) receptor in the human and the guinea pig colon. Eur J Pharmacol. 1999; 383:281–285.
Article
45. Takada K, Sakurai-Yamashita Y, Yamashita K, et al. Regional difference in correlation of 5-HT4 receptor distribution with cholinergic transmission in the guinea pig stomach. Eur J Pharmacol. 1999; 374:489–494.
Article
46. McLean PG, Coupar IM. Stimulation of cyclic AMP formation in the circular smooth muscle of human colon by activation of 5-HT4-like receptors. Br J Pharmacol. 1996; 117:238–239.
47. Briejer MR, Bosmans JP, Van Daele P, et al. The in vitro pharmacological profile of prucalopride, a novel enterokinetic compound. Eur J Pharmacol. 2001; 423:71–83.
Article
48. Briejer MR, Prins NH, Schuurkes JA. Effects of the enterokinetic prucalopride (R093877) on colonic motility in fasted dogs. Neurogastroenterol Motil. 2001; 13:465–472.
Article
49. Bouras EP, Camilleri M, Burton DD, McKinzie S. Selective stimulation of colonic transit by the benzofuran 5HT4 agonist, prucalopride, in healthy humans. Gut. 1999; 44:682–686.
Article
50. Coremans G, Kerstens R, De Pauw M, Stevens M. Prucalopride is effective in patients with severe chronic constipation in whom laxatives fail to provide adequate relief. Results of a double-blind, placebo-controlled clinical trial. Digestion. 2003; 67:82–89.
51. Emmanuel AV, Roy AJ, Nicholls TJ, Kamm MA. Prucalopride, a systemic enterokinetic, for the treatment of constipation. Aliment Pharmacol Ther. 2002; 16:1347–1356.
Article
52. Tack J, van Outryve M, Beyens G, Kerstens R, Vandeplassche L. Prucalopride (Resolor) in the treatment of severe chronic constipation in patients dissatisfied with laxatives. Gut. 2009; 58:357–365.
Article
53. Camilleri M, Kerstens R, Rykx A, Vandeplassche L. A placebo-controlled trial of prucalopride for severe chronic constipation. N Engl J Med. 2008; 358:2344–2354.
Article
54. Joslyn A, Stevens M, De Pauw M, Kerstens R. Prucalopride (PRU) is safe and generally well tolerated in elderly patients with chronic constipation (CC). Am J Gastroenterol. 2000; 95:2537–2538.
Article
55. Sloots CE, Poen AC, Kerstens R, et al. Effects of prucalopride on colonic transit, anorectal function and bowel habits in patients with chronic constipation. Aliment Pharmacol Ther. 2002; 16:759–767.
Article
Full Text Links
  • KJG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr