Diabetes Metab J.  2016 Oct;40(5):414-417. 10.4093/dmj.2016.40.5.414.

A Potential Issue with Screening Prediabetes or Diabetes Using Serum Glucose: A Delay in Diagnosis

Affiliations
  • 1Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea.
  • 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea. cydoctor@chol.com

Abstract

The aim of this study was to compare the fasting serum glucose level with the fasting plasma glucose level for diagnosing hyperglycemic states in real-life clinical situations. Additionally, we investigated a usual delay in sample processing and how such delays can impact the diagnosis of hyperglycemic states. Among 1,254 participants who had normoglycemia or impaired fasting glucose (IFG) assessed by the fasting serum glucose level, 20.9% were newly diagnosed with diabetes based on the plasma fasting glucose level. Of the participants with normoglycemia, 62.1% and 14.2% were newly diagnosed with IFG and diabetes, respectively, according to the plasma fasting glucose level. In our clinical laboratory for performing health examinations, the time delay from blood sampling to glycemic testing averaged 78±52 minutes. These findings show that the ordinary time delay for sample processing of the serum glucose for screening hyperglycemic states may be an important reason for these diagnoses to be underestimated in Korea.

Keyword

Diagnosing diabetes; Plasma glucose; Serum glucose

MeSH Terms

Blood Glucose*
Diagnosis*
Fasting
Glucose
Korea
Mass Screening*
Plasma
Prediabetic State*
Glucose

Reference

1. Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM. National Academy of Clinical Biochemistry. Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care. 2011; 34:1419–1423.
2. Ko SH, Kim SR, Kim DJ, Oh SJ, Lee HJ, Shim KH, Woo MH, Kim JY, Kim NH, Kim JT, Kim CH, Kim HJ, Jeong IK, Hong EK, Cho JH, Mok JO, Yoon KH. Committee of Clinical Practice Guidelines, Korean Diabetes Association. 2011 Clinical practice guidelines for type 2 diabetes in Korea. Diabetes Metab J. 2011; 35:431–436.
3. Tietz NW, Burtis CA, Ashwood ER, Brund DE. Chapter 25, Carbohydrate. Tietz textbook of clinical chemistry and molecular diagnostics. 4th ed. Philadelphia: Elsevier Saunders;2006. p. 837–901.
4. Jee SH, Suh I, Kim IS, Appel LJ. Smoking and atherosclerotic cardiovascular disease in men with low levels of serum cholesterol: the Korea Medical Insurance Corporation Study. JAMA. 1999; 282:2149–2155.
5. Chan AY, Swaminathan R, Cockram CS. Effectiveness of sodium fluoride as a preservative of glucose in blood. Clin Chem. 1989; 35:315–317.
6. Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2011; 57:e1–e47.
7. Yu SH, Kang JG, Hwang YC, Ahn KJ, Yoo HJ, Ahn HY, Park SW, Park CY. Increasing achievement of the target goals for glycemic, blood pressure and lipid control for adults with diagnosed diabetes in Korea. J Diabetes Investig. 2013; 4:460–465.
8. Gambino R, Piscitelli J, Ackattupathil TA, Theriault JL, Andrin RD, Sanfilippo ML, Etienne M. Acidification of blood is superior to sodium fluoride alone as an inhibitor of glycolysis. Clin Chem. 2009; 55:1019–1021.
9. Stahl M, Jorgensen LG, Hyltoft Petersen P, Brandslund I, de Fine Olivarius N, Borch-Johnsen K. Optimization of preanalytical conditions and analysis of plasma glucose. 1. Impact of the new WHO and ADA recommendations on diagnosis of diabetes mellitus. Scand J Clin Lab Invest. 2001; 61:169–179.
10. Carstensen B, Lindstrom J, Sundvall J, Borch-Johnsen K, Tuomilehto J. DPS Study Group. Measurement of blood glucose: comparison between different types of specimens. Ann Clin Biochem. 2008; 45(Pt 2):140–148.
11. Boyanton BL Jr, Blick KE. Stability studies of twenty-four analytes in human plasma and serum. Clin Chem. 2002; 48:2242–2247.
12. Miles RR, Roberts RF, Putnam AR, Roberts WL. Comparison of serum and heparinized plasma samples for measurement of chemistry analytes. Clin Chem. 2004; 50:1704–1706.
13. Lee YW, Cha YJ, Chae SL, Song J, Yun YM, Park HI, Seong MW, Whang DH, Kim HS, Kim JH, Lee BS, Hwang YS. Effectiveness of sodium fluoride as a glycolysis inhibitor on blood glucose measurement: comparison of blood glucose using specimens from the Korea National Health and Nutrition Examination Survey. Korean J Lab Med. 2009; 29:524–528.
14. Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, Choi S, Chun C, Khang YH, Oh K. Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol. 2014; 43:69–77.
Full Text Links
  • DMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr