1. Tomlinson A, Phillips CI. Ratio of optic cup to optic disc: in rela-tion to axial length of eyeball and refraction. Br J Ophthamol. 1969; 53:765–8.
Article
2. Chihara E, Sawada A. Atypical nerve fiber layer defects in high myopes with high-tension glaucoma. Arch Ophthalmol. 1990; 108:228–32.
Article
3. Cahane M, Bartov E. Axial length and scleral thickness effect on susceptibility to glaucomatous damage: a theoretical model implementing Laplace's law. Ophthalmic Res. 1992; 24:280–4.
Article
4. Avetisov ES, Savitskaya NF. Some features of ocular micro-circulation in myopia. Ann Ophthalmol. 1977; 9:1261–4.
5. Shih YF, Horng IH, Yang CH. . Ocular pulse amplitude in myopia. J Ocul Pharmacol. 1991; 7:83–7.
Article
6. To'mey KF, Faris BM, Jalkh AE, Nasr AM. Ocular pulse in high myopia: A study of 40 eyes. Ann Ophthalmol. 1981; 13:569–71.
7. Ozdek SC, Onol M, Gürelik G, Hasanreisoglu B. Scanning laser polarimetry in normal subjects and patients with myopia. Br J Ophthalmol. 2000; 84:264–7.
Article
8. Tay E, Seah SK, Chan SP. . Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. Am J Ophthalmol. 2005; 139:247–52.
Article
9. Chen TC, Cense B, Pierce MC. . Spectral domain optical co-herence tomography: ultra-high speed, ultra-high resolution oph-thalmic imaging. Arch Ophthalmol. 2005; 123:1715–20.
10. Melo GB, Libera RD, Barbosa AS. . Comparison of optic disk and retinal nerve fiber layer thickness in nonglaucomatous and glaucomatous patients with high myopia. Am J Ophthalmol. 2006; 142:858–60.
Article
11. Leung CK, Cheng AC, Chong KK. . Optic disc measurements in myopia with optical coherence tomography and confocal scan-ning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2007; 48:3178–83.
Article
12. Jonas JB, Nguyen XN, Gusek GC, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I: Morphometric data. Invest Ophthalmol Vis Sci. 1989; 30:908–18.
13. Jonas JB, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. II: Correlations. Invest Ophthalmol Vis Sci. 1989; 30:919–26.
14. Jonas JB, Fernández MC, Naumann GO. Glaucomatous para-papillary atrophy. Occurrence and correlations. Arch Ophthalmol. 1992; 110:214–22.
15. Park KH, Tomita G, Liou SY, Kitazawa Y. Correlation between peripapillary atrophy and optic nerve damage in normal-tension glaucoma. Ophthalmology. 1996; 103:1899–906.
Article
16. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989; 107:453–64.
Article
17. Zeimer R, Asrani S, Zou S. . Quantitative detection of glau-comatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology. 1998; 105:224–31.
18. Greenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol. 2003; 121:41–6.
Article
19. Leung CK, Chan WM, Yung WH. . Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005; 112:391–400.
20. Tan O, Li G, Lu AT. . Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008; 115:949–56.
21. Kim NR, Lee ES, Seong GJ. . Comparing the ganglion cell complex and retinal nerve fiber layer measurements by Fourier do-main OCT to detect glaucoma in high myopia. Br J Ophthalmol. 2011; 95:1115–21.
22. Shoji T, Nagaoka Y, Sato H, Chihara E. Impact of high myopia on the performance of SD-OCT parameters to detect glaucoma. Graefes Arch Clin Exp Ophthalmol. 2012; 250:1843–9.
Article
23. Nonaka A, Hangai M, Akagi T. . Biometric features of peri-papillary atrophy beta in eyes with high myopia. Invest Ophthalmol Vis Sci. 2011; 52:6706–13.
Article
24. O'Donnell C, Hartwig A, Radhakrishnan H. Correlations between refractive error and biometric parameters in human eyes using the LenStar 900. Cont Lens Anterior Eye. 2011; 34:26–31.
25. Hoh ST, Lim MC, Seah SK. . Peripapillary retinal nerve fiber layer thickness variations with myopia. Ophthalmology. 2006; 113:773–7.
Article
26. Hirasawa H, Tomidokoro A, Araie M. . Peripapillary retinal nerve fiber layer thickness determined by spectral-domain optical coherence tomography in ophthalmologically normal eyes. Arch Ophthalmol. 2010; 128:1420–6.
Article
27. Leung CK, Mohamed S, Leung KS. . Retinal nerve fiber layer measurements in myopia: An optical coherence tomography study. Invest Ophthalmol Vis Sci. 2006; 47:5171–6.
Article
28. Rauscher FM, Sekhon N, Feuer WJ, Budenz DL. Myopia affects retinal nerve fiber layer measurements as determined by optical co-herence tomography. J Glaucoma. 2009; 18:501–5.
Article
29. Na JH, Moon BG, Sung KR. . Characterization of peripapillary atrophy using spectral domain optical coherence tomography. Korean J Ophthalmol. 2010; 24:353–9.
Article
30. Manjunath V, Shah H, Fujimoto JG, Duker JS. Analysis of peri-papillary atrophy using spectral domain optical coherence tomography. Ophthalmology. 2011; 118:531–6.
Article
31. Kang SH, Hong SW, Im SK. . Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coher-ence tomography. Invest Ophthalmol Vis Sci. 2010; 51:4075–83.
Article
32. Lam DS, Leung KS, Mohamed S. . Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci. 2007; 48:376–82.
Article
33. Choi SW, Lee SJ. Thickness changes in the fovea and peripapillary retinal nerve fiber layer depend on the degree of myopia. Korean J Ophthalmol. 2006; 20:215–9.
Article
34. Kim SH, Park JY, Park TK, Ohn YH. Use of spectral-domain opti-cal coherence tomography to analyze macular thickness according to refractive error. J Korean Ophthalmol Soc. 2011; 52:1286–95.
Article