Cancer Res Treat.  2005 Oct;37(5):257-267.

Epstein-Barr Virus in Human Malignancy: A Special Reference to Epstein-Barr Virus associated Gastric Carcinoma

Affiliations
  • 1Department of Pathology, Seoul National University College of Medicine, Seoul, Korea. woohokim@snu.ac.kr
  • 2Department of Pathology, Seoul National University Boramae Hospital, Seoul, Korea.

Abstract

Epstein-Bar virus (EBV), a human herpesvirus, establishes a life-long persistent infection in 90~95% of human adult population worldwide. EBV is the etiologic agent of infectious mononucleosis, and EBV is associated with a variety of human malignancy including lymphoma and gastric carcinoma. Recently, EBV has been classified as group 1 carcinogen by the WHO International Agency for Research on Cancer. Evidence is presented which suggests that failures of the EBV-specific immunity may play a role in the pathogenesis of EBV-associated malignancy. At present, the precise mechanisms by which EBV transforms B lymphocytes have been disclosed. Encouragingly, they have had enough success so far to keep them enthusiastic about novel therapeutic trial in the field of EBV-associated lymphoma. However, information on EBV-associated gastric carcinoma is still at dawn. This article reviews EBV biology, immunological response of EBV infection, unique oncogenic property of EBV, peculiarity of EBV-associated gastric carcinoma, and lastly, EBV-targeted therapy and vaccination.

Keyword

Human herpes virus 4; Epstein-Barr virus (EBV); Oncogenic virus; Stomach neoplasms; Lymphoma; EBV-targeted treatment

MeSH Terms

Adult
B-Lymphocytes
Biology
Epstein-Barr Virus Infections
Herpesvirus 4, Human*
Humans*
Infectious Mononucleosis
International Agencies
Lymphoma
Oncogenic Viruses
Stomach Neoplasms
Vaccination

Figure

  • Fig. 1 Map of the B95-8 EBV genome. Vertical lines indicate BamHI restriction sites. By convention, the restriction fragments are designated alpbabetically, with the A fragment being the largest, the B fragment the next largest, and so on. Open reading frames are identified by making reference to the appropriate BamHI restriction fragment. Thus, BKRF1 indicates the BamHI-K fragment, rightward open reading frame, 1 (EBNA-1). (Source: Ref. 12)

  • Fig. 2 EBV episome, transcripts, mRNAs, and proteins in type III latent infection. Largely unique (U1-U5) and highly repetitive internal (IR1-4) or terminal repeat (TR) DNA domains, the episomal replicon (ori P), and the location of exons encoding EBV nuclear proteins (EBNA 1, 2, 3A, 3B, 3C, and LP) or membrane proteins (LMP 1, 2A, or 2B) genes are indicated. (Source: Ref.12)

  • Fig. 3 The four pathways by which the EBV latent membrane protein 1 (LMP1) is thought to signal inside cells. LMP1 mediates nuclear factor κB (NF-κB) signaling through both the C-terminal activating region 1 (CTAR1) and CTAR2 domains via tumor necrosis factor receptor (TNFR) associated factor (TRAF) molecules. The TNFR associated death domain (TRADD)-TRAF2 complex, which binds to CTAR2, also activates the C-Jun N-terminal kinase (JNK)-AP-1 pathway. Both CTAR1 and CTAR2 use TRAF2 to signal via the p38/MAPK (mitogen activated protein kinase) axis. The recently identified box 1 and box 2 motifs (CTAR3) activate the Janus kinas (JAK)-STAT pathway. The net result of signaling along these pathways is the regulation of transcription of various cellular genes and is responsible for many of the pleiotropic effects of LMP1. (Source: Ref.32)

  • Fig. 4 In situ hybridization of Epstein-Barr virus encoded small RNAs (EBER) in gastric cancer. This reveals specific EBER signals in nearly all of cancer cell nuclei. (A) Poorly differentiated adenocarcinoma, (B) Well differentiated adenocarcinoma. (C) Gastric carcinoma with lymphoid stroma. Note a few signals in the surrounding lymphoid stroma, while EBER are localized over the nuclei of all the cancer cell nuclei. (Source: Ref.34,40)


Reference

1. Burkitt DA. Sarcoma involving the jaws in Africa children. Br J Surg. 1958; 45:218–223. PMID: 13628987.
2. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet. 1964; 1:702–703. PMID: 14107961.
Article
3. Henle G, Henle W, Diehl V. Relation of Burkitt's tumor-associated herpes-type virus to infectious mononucleosis. Proc Natl Acad Sci USA. 1968; 59:94–101. PMID: 5242134.
4. International Agency for Research on Cancer. Epstein-Barr virus and Kaposi's sarcoma Herpesvirus/Human Herpesvirus 8. 1997. vol 70. Leon: WHO.
5. Raab-Traub N, Flynn K, Pearson G. The differentiated form of nasopharyngeal carcinoma contains Epstein-Barr virus DNA. Int J Cancer. 1987; 39:25–29. PMID: 3025109.
Article
6. Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J. Epstein-Barr viral DNA in tissues of Hodgkin's disease. Am J Pathol. 1987; 192:86–91. PMID: 2821817.
7. Jones JF, Shurin S, Abramowsky C, Tubbs RR, Sciotto CG, Wahl R, et al. T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med. 1988; 318:733–741. PMID: 2831453.
Article
8. Burke AP, Yen TSB, Shekitka KM, Sobin LH. Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol. 1990; 3:377–380. PMID: 2163534.
9. Bonnet M, Guinebretiere JM, Kremmer E, Grunewald V, Benhamou E, Contesso G, Joab I. Detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst. 1990; 91:1376–1381. PMID: 10451442.
Article
10. Labrecque LG, Barnes DM, Fentiman IS, Griffin BE. Epstein-Barr virus in epithelial cell tumors: a breast cancer study. Cancer Res. 1995; 55:39–45. PMID: 7805038.
11. Sugawara Y, Mizugaki Y, Uchida T, Torii T, Imai S, Makuuchi M, et al. Detection of Epstein-Barr virus (EBV) in hepatocellular carcinoma tissue: a novel EBV latency characterized by the absence of EBV-associated small RNA expression. Virology. 1999; 256:196–202. PMID: 10191184.
12. Kieff E, Rickinson AB. Fields BN, Knipe DM, Howley P, editors. Epstein-Barr virus and its replication. Fields virology. 2001. 4th ed. Philadelpia: Lippincott-Raven publishers;p. 2511–2573.
13. Ambinder RF. Gammaherpesviruses and "Hit-and-Run" oncogenesis. Am J Pathol. 2000; 156:1–3. PMID: 10623645.
Article
14. Staratschek-Jox A, Kotkowski S, Belge G, Rudiger T, Bullerdiek J, Diehl V, Wolf J. Detection of Epstein-Barr virus in Hodgkin-Reed-Sternberg cells: no evidence for the persistence of integrated viral fragments in Latent membrane protein-1 (LMP-1)-negative classical Hodgkin's disease. Am J Pathol. 2000; 156:209–216. PMID: 10623669.
15. Baer R, Banker AT, Biggin MD. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984; 310:207–211. PMID: 6087149.
Article
16. Raab-Traub N, Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell. 1986; 47:883–889. PMID: 3022942.
Article
17. Miller G. The Switch between latency and replication of Epstein-Barr virus. J Infec Dis. 1990; 161:833–844. PMID: 2157769.
Article
18. Nemerow GR, Mold C, Schwend VK, Tollefson V, Cooper NR. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J Virol. 1987; 61:1416–1420. PMID: 3033269.
Article
19. Borza CM, Hutt-Fletcher LM. Alternate replication in B cells and epithelial ells switches tropism of Epstein-Barr virus. Nature Med. 2002; 8:594–599. PMID: 12042810.
20. Sixbey JW, Nedrud JG, Raab-Traub N, Hanes RA, Pagano JS. Epstein-Barr virus replication in oropharyngeal epithelial cells. N Engl J Med. 1984; 310:1225–1230. PMID: 6323983.
Article
21. Evans As. Clinical syndromes associated with EB virus infections. Ann Intern Med. 1972; 18:77–93.
22. Tosato G, Blaese RM. Epstein-Barr virus infection and immunoregulation in man. Adv Immunol. 1985; 37:99–149. PMID: 2988307.
Article
23. Tang H, Matthes T, Carballido-Perrig N, Zubler RH, Kindler V. Differential induction of T cell cytokine mRNA in Epstein-Barr virus-transformed B cell clones: consititutive and inducible expression of interleukin-4 mRNA. Eur J Immunol. 1993; 23:899–903. PMID: 8384561.
24. Cohen JI, Lekstrom K. Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J Virol. 1999; 73:7627–7632. PMID: 10438853.
Article
25. Levitskaya J, Shapiro A, Leonchiks A, Ciehanover A, Masucci MG. Inhibition of ubiquitin/proteosome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA. 1997; 94:12616–12621. PMID: 9356498.
26. Masucci MG. Epstein-Barr virus oncogenesis and the ubiquitin-proteasome system. Oncogene. 2004; 23:2107–2115. PMID: 15021898.
Article
27. Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell. 1985; 43:831–840. PMID: 3000618.
Article
28. Dawson CW, Rickinson AB, Young LS. Epstein-Barr virus latent membrane protein inhibits human epithelial cell differentiation. Nature. 1990; 344:777–780. PMID: 2158628.
Article
29. Fahraeus R, Rymo L, Rhim JS, Klein G. Morphological transformation of human keratinocytes expressing the LMP gene of Epstein-Barr virus. Nature. 1990; 345:447–449. PMID: 1692971.
30. Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N. Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci U S A. 1998; 95:11963–11968. PMID: 9751773.
Article
31. Curran JA, Laverty FS, Campbell D, Macdiarmid J, Wilson JB. Epstein-Barr virus encoded latent membrane protein-1 induces epithelial cell proliferation and sensitizes transgenic mice to chemical carcinogenesis. Cancer Res. 2001; 61:6730–6738. PMID: 11559544.
32. Baumforth KR, Young LS, Flavell KJ, Constandinou C, Murray PG. The Epstein-Barr virus and its association with human cancers. Mol Pathol. 1999; 52:307–322. PMID: 10748864.
Article
33. Cho YS, Chang MS, Park SH, Kim HS, Kim WH. In situ hybridization of Epstein-Barr virus in tumor cells and tumor-infiltrating lymphocytes of the gastrointestinal tract. Human Pathology. 2001; 32:297–301. PMID: 11274639.
Article
34. Chang MS, Kim WH, Kim CW, Kim YI. Epstein-Barr virus in gastric carcinomas with lymphoid stroma. Histopathology. 2000; 37:309–315. PMID: 11012737.
Article
35. Wu TC, Mann RB, Charache P, Hayward SD, Staal S, Lambe BC, et al. Detection of EBV gene expression in Reed-Sternberyg cells of Hodgkin's disease. Int J Cancer. 1990; 46:801–804. PMID: 2172169.
36. Barletta JM, Kingma DW, Charache P, Mann RB, Ambinder RF. Rapid in situ hybridization for the diagnosis of latent Epstein-Barr virus infection. Mol Cell Probes. 1993; 7:105–109. PMID: 8391639.
Article
37. Chang MS, Lee JH, Kim JP, Kim HS, Lee HS, Kim CW. Microsatellite instability and Epstein-Barr virus infection in gastric remnant cancers. Pathol Int. 2000; 50:486–492. PMID: 10886725.
Article
38. Chang MS, Lee HS, Kim HS, Kim YI, Kim WH. Clinicopathologic characteristics of Epstein-Barr virus-incorporated gastric cancers in Korea. Pathol Res Pract. 2001; 197:395–400. PMID: 11432666.
Article
39. Chang MS, Kim HS, Kim CW, Kim YI, Lee BL, Kim WH. Epstein-Barr virus, p53 protein and microsatellite instability in adenoma-carcinoma sequence of the stomach. Hum Pathol. 2002; 33:415–420. PMID: 12055676.
40. Chang MS, Lee HS, Kim HS, Kim SH, Choi SI, Lee BL, et al. Epstein-Barr virus and microsatellite instability in gastric carcinogenesis. J Pathol. 2003; 199:447–452. PMID: 12635135.
Article
41. Chang MS, Lee HS, Jung EJ, Kim CW, Lee BL, Kim WH. Cell cycle regulators, bcl-2 and NF-kB in Epstein-Barr virus-associated gastric carcinomas. Int J Oncol. (In print).
Article
42. Murray PG, Niedobitek G, Kremmer E, Grasser F, Reynolds GM, Cruchiley A, et al. In situ detection of the Epstein-Barr virus-encoded nuclear antigen 1 in oral hairy leukoplakia and virus-associated carcinomas. J Pathol. 1996; 178:44–47. PMID: 8778314.
Article
43. Cancer Registry system in Korea. Headquarters of Korea Central Cancer Registry. Available from: URL:http://ncc.re.kr.
44. Fukayama M, Hayashi Y, Iwasaki Y, Chong J, Ooba T, Takizawa T, et al. Epstein-Barr virus-associated gastric carcinoma and Epstein-Barr virus infection of the stomach. Lab Invest. 1994; 71:73–81. PMID: 8041121.
45. Yanai H, Takada K, Shimizu N, Mizugaki Y, Tada M, Okita K. Epstein-Barr virus infection in non-carcinomatous gastric epithelium. J Pathol. 1997; 183:293–298. PMID: 9422984.
Article
46. Gulley ML, Pulitzer DR, Eagan PA, Schneider BG. Epstein-Barr virus infection is an early event in gastric carcinogenesis and is independent of bcl-2 expression and p53 accumulation. Hum Pathol. 1996; 27:20–27. PMID: 8543306.
Article
47. Imai S, Koizumi S, Sugiura M, Tokunaga M, Uemura Y, Yamamoto N, et al. Gstric carcinoma: Monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc Natl Acad Sci USA. 1994; 91:9131–9135. PMID: 8090780.
48. Levine PH, Stemmermann G, Lennette ET, Hildesheim A, Shibata D, Nomura A. Elevated antibody titers to Epstein-Barr virus prior to the diagnosis of Epstenin-Barr virus-associated gastric adenocarcinoma. Int J Cancer. 1995; 60:642–644. PMID: 7860138.
49. Osato T, Imai S. Epstein-Barr virus and gastric carcinoma. Semin Cancer Biol. 1996; 7:175–182. PMID: 8946601.
Article
50. Shibata D, Weiss LM. Epstein-Barr virus-associated gastric adenocarcinoma. Am J Pathol. 1992; 140:769–774. PMID: 1314023.
51. Rawlands DC, Ito M, Mangham DC, Reynolds G, Hallissey MT, Fielding JW, et al. Epstein-Barr virus and carcinomas: rare association of the virus with gastric adenocarcinomas. Br J Cancer. 1993; 68:1014–1019. PMID: 8217590.
Article
52. Tokunaga M, Land CE, Uemura Y, Tokudome T, Tanaka S, Sato E. Epstein-Barr virus in gastric carcinoma. Am J Pathol. 1993; 143:1250–1254. PMID: 8238241.
53. Shin WS, Kang MW, Kang JH, Choi MK, Ahn BM, Kim JK, et al. Epstein-Barr virus-associated gastric adenocarcinomas among Koreans. Am J Clin Pathol. 1996; 105:174–181. PMID: 8607441.
Article
54. Nakamura S, Ueki T, Yao T, Ueyama T, Tsuneyoshi M. Epstein-Barr virus in gastric carcinoma with lymphoid stroma. Special Reference to its detection by the polymerase chain reaction and in situ hybridization in 99 tumors, including a morphological analysis. Cancer. 1994; 73:2239–2249. PMID: 8168030.
55. Mastsunou H, Konishi F, Hori H, Ikeda T, Sasaki K, Hirose Y, Yamamichi N. Characteristics of Epstein-Barr virus-associated gastric carcinoma with lymphoid stroma in Japan. Cancer. 1996; 77:1998–2004. PMID: 8640662.
Article
56. Watanabe H, Enjoji M, Imai T. Gastric carcinoma with lymphoid stroma. Its morphologic characteristics and prognostic correlations. Cancer. 1976; 38:232–243. PMID: 947518.
57. Oda K, Tamaru J, Takenouchi T, Mikata A, Nunomura M, Saitoh N, et al. Association of Epstein-Barr virus with gastric carcinoma with lymphoid stroma. Am J Pathol. 1993; 143:1063–1071. PMID: 8214002.
58. Yamamoto N, Tokunaga M, Uemura Y, Tanaka S, Shirahama H, Nakamura T, et al. Epstein-Barr virus and gastric remnant cancer. Cancer. 1994; 74:805–809. PMID: 8039108.
Article
59. Arikawa J, Tokunaga M, Satoh E, Tanakia S, Land CE. Morphological characterics of Epstein-Barr virus-related early gastric carcinoma: A case control study. Pathol Int. 1997; 47:360–367. PMID: 9211523.
60. Lee HS, Chang MS, Yang H-K, Lee BL, Kim WH. Epstein-barr virus-positive gastric carcinoma has a distinct protein expression profile in comparison to epstein-barr virus-negative carcinoma. Clin Cancer Res. 2004; 10:1698–1705. PMID: 15014022.
61. Hoshikawa Y, Satoh Y, Murakami M, Maeta M, Kaibara N, Ito H, et al. Evidence of lytic infection of Epstein-Barr virus (EBV) in EBV-positive gastric carcinoma. J Med Virol. 2002; 66:351–359. PMID: 11793387.
Article
62. Luo B, Wang Y, Wang XF, Liang H, Yan LP, Huang BH, Zhao P. Expression of Epstein-Barr virus genes in EBV-associated gastric carcinomas. World J Gastroenterol. 2005; 11:629–633. PMID: 15655811.
Article
63. Wei MX, Ooka T. A transforming function of the BARF1 gene encoded by Epstein-Barr virus. EMBO J. 1989; 8:2897–2903. PMID: 2555151.
Article
64. Sheng W, Decaussin G, Sumner S, Ooka T. N-terminal domain of BARF1 gene encoded by Epstein-Barr virus is essential for malignant transformation of rodent fibroblasts and activation of Bcl-2. Oncogene. 2001; 20:1176–1185. PMID: 11313861.
Article
65. Sheng W, Decaussin G, Ligout A, Takada K, Ooka T. Malignant transformation of Epstein-Barr virus-negative Akata cells by introduction of the BARF1 gene carried by Epstein-Barr virus. J Virol. 2003; 76:3859–3865. PMID: 12610162.
Article
66. Zur Hausen A, Brink AA, Craanen ME, Middeldorp JM, Meijer CJ, van den Brule AJ. Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res. 2000; 60:2745–2748. PMID: 10825150.
67. Fingeroth JD, Weiss JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci USA. 1984; 81:4510–4514. PMID: 6087328.
Article
68. Sixbey JW, Yao QY. Immunoglobulin A-induced shift of Epstein-Barr virus tissue tropism. Science. 1992; 255:1578–1580. PMID: 1312750.
Article
69. Bayliss GJ, Wolf H. Epstein-Barr virus-induced cell fusion. Nature. 1980; 287:164–165. PMID: 6253791.
Article
70. Schneider BG, Gulley ML, Eagan P, Bravo JC, Mera R, Geradts J. Loss of p16/CDKN2A tumor suppressor protein in gastric adenocarcinoma is associated with Epstein-Barr virus and anatomic location in the body of the stomach. Hum Pathol. 2000; 31:45–50. PMID: 10665912.
Article
71. Kang GH, Lee S, Kim WH, Lee HW, Kim JC, Rhyu MG, et al. Epstein-barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcino. Am J Pathol. 2002; 160:787–794. PMID: 11891177.
72. Chong J-M, Fukayama M, Hayashi Y, Takizawa T, Koike M, Konishi M, et al. Microsatellite instability in the progression of gastric carcinoma. Cancer Res. 1994; 54:4595–4597. PMID: 8062248.
73. Leung SY, Yuen ST, Chung LP, Chu KM, Wong Mp, Rbanicki FJ, et al. Microsatellite instability, Epstein-Barr virus, mutation of type II transforming growth factor beta receptor and BAX in gastric carcinomas in Hong Kong Chinese. Br J Cancer. 1999; 79:582–588. PMID: 10027334.
74. Wu M-S, Shun C-T, Wu C-C, Hsu TY, Lin MT, Chang MC, et al. Epstein-Barr virus-associated gastric carcinomas: Relation to H. pylori infection and genetic alterations. Gastroenterology. 2000; 118:1031–1038. PMID: 10833477.
Article
75. Boutell C, Everett R. The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and Ubiquitinates p53. J Biol Chem. 2003; 278:36596–36602. PMID: 12855695.
Article
76. Holowaty MN, Sheng Y, Nguyen T, Arrowsmith C, Frappier L. Protein interaction domains of the ubiquitin-specific protease, USP7/HAUSP. J Biol Chem. 2003; 278:47753–47761. PMID: 14506283.
Article
77. Putnam DA. Antisense strategies and therapeutic applications. Am J Health Syst Pharm. 1996; 53:151–160. quiz 182-3. PMID: 8653480.
78. Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol. 2002; 76:9225–9231. PMID: 12186906.
Article
79. Jiang M, Milner J. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene. 2002; 21:6041–6048. PMID: 12203116.
Article
80. Cahir-McFarland ED, Davidson DM, Schauer SL, Duong J, Kieff E. NFkB inhibition causes spontaneous apoptosis in Epstein-Barr virus-transformed lymphoblastoid cells. Proc Natl Acad Sci USA. 2000; 97:6055–6060. PMID: 10811897.
81. Farrell CJ, Lee JM, Shin EC, Cebrat M, Cole PA, Hayward SD. Inhibition of Epstein-Barr virus-induced growth proliferation by a nuclear antigen EBNA2-TAT peptide. Proc Natl Acad Sci USA. 2004; 101:4625–4630. PMID: 15070768.
Article
82. Chodosh J, Holder VP, Gan YJ, Belgaumi A, Sample J, Sixbey JW. Eradication of latent Epstein-Barr virus by hydroxyurea alters the growth-transformed cell phenotype. J Infect Dis. 1998; 177:1194–1201. PMID: 9593003.
Article
83. Dhar SK, Yoshida K, Machida Y, Khaira P, Chaudhuri B, Wohlschlegel JA, et al. Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell. 2001; 106:287–296. PMID: 11509178.
Article
84. Inman GJ, Bienne UK, Parker GA, Farrell PJ, Allday MJ. Activators of the Epstein-Barr virus lytic program concomitantly induce apoptosis, but lytic gene expression protects from cell death. J Virol. 2001; 75:2400–2410. PMID: 11160743.
Article
85. Westphal EM, Blackstock W, Feng WH, Israel BF, Kenney SC. Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies. Cancer Res. 2000; 60:5781–5788. PMID: 11059774.
86. Aghi M, Kramm CM, Chou TC, Breakefield XO, Chiocca EA. Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies. J Natl Cancer Inst. 1998; 90:370–380. PMID: 9498487.
Article
87. Gutierrez MI, Judde J, Magrath IT, Bhatia KG. Switching viral latency to viral lysis: A novel therapeutic approach for Epstein-Barr virus-associated neoplasia. Cancer Res. 1996; 56:969–972. PMID: 8640787.
88. Falk KI, Ernberg I. Demethylation of the Epstein-Barr virus origin of lytic replication and of the immediate early gene BZLF1 is DNA replication independent. Brief report. Arch Virol. 1999; 144:2219–2227. PMID: 10603176.
89. Gruffat H, Manet E, Sergeant A. MEF2-mediated recruitment of class II HDAC at the EBV immediate early gene BZLF1 links latency and chromatin remodeling. EMBO Rep. 2002; 3:141–146. PMID: 11818339.
90. Ben-Sasson SA, Klein G. Activation of the Epstein-Barr virus genome by 5-aza-cytidine in latently infected human lymphoid lines. Int J Cancer. 1981; 28:131–135. PMID: 6172387.
91. Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998; 92:1549–1555. PMID: 9716582.
Article
92. Paludan C, Bickham K, Nikiforow S, Tsang ML, Goodman K, Hanekom WA, et al. Epstein-Barr nuclear antigen 1-specific CD4(+) Th1 cells kill Burkitt's lymphoma cells. J Immunol. 2002; 169:1593–1603. PMID: 12133989.
93. Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995; 345:9–13. PMID: 7799740.
Article
94. Murray RJ, Kurilla MG, Brooks JM, Thomas WA, Rowe M, Kieff E, et al. Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): impli cations for the immune control of EBV-positive malignancies. J Exp Med. 1992; 176:157–168. PMID: 1319456.
95. Chua D, Huang J, Zheng B, Lau SY, Luk W, Kwong DL, et al. Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma. Int J Cancer. 2001; 94:73–80. PMID: 11668481.
Article
96. Wagner HJ, Sili U, Gahn B, Vigouroux S, Huls MH, Xie W, et al. Expansion of EBV latent membrane protein 2a specific cytotoxic T cells for the adoptive immunotherapy of EBV latency type 2 malignancies: influence of recombinant IL12 and IL15. Cytotherapy. 2003; 5:231–240. PMID: 12850791.
Article
97. Taylor GS, Haigh TA, Gudgeon NH, Phelps RJ, Lee SP, Steven NM, et al. Dual stimulation of Epstein-Barr virus (EBV)-specific CD4+/- and CD8+/- T cell responses by a chimeric antigen construct: Potential therapeutic vaccine for EBV-positive nasopharyngeal carcinoma. J Virol. 2004; 78:768–778. PMID: 14694109.
98. Bollard CM, Rossig C, Calonge MJ, Huls MH, Wagner HJ, Massague J, et al. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood. 2002; 99:3179–3187. PMID: 11964281.
99. The BWH Bulletin-2004 Winter. Available from: URL:http://www.channing.harvard.edu/Epstein_Barr_Vaccine.htm.
100. Ulaeto D, Wallace L, Morgan A, Morein B, Rickinson AB. In vitro T cell responses to a candidate Epstein-Barr virus vaccine: human CD4+ T cell clones specific for the major envelope glycoprotein gp340. Eur J Immunol. 1998; 18:1689–1697. PMID: 2904885.
Article
101. Jung S, Chung YK, Chang SH, Kim J, Kim HR, Jang HS, et al. DNA-mediated immunization of glycoprotein 350 of Epstein-Barr virus induces the effective humoral and cellular immune responses against the antigen. Mol Cells. 2001; 12:41–49. PMID: 11561729.
102. Khanna R, Sherritt M, Burrows SR. EBV structural antigens, gp350 and gp85, as targets for ex vivo virus-specific CTL during acute infectious mononucleosis: potential use of gp350/gp85 CTL epitopes for vaccine design. J Immunol. 1999; 162:3063–3069. PMID: 10072559.
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr