J Vet Sci.  2011 Jun;12(2):127-132. 10.4142/jvs.2011.12.2.127.

Genetic variability of six indigenous goat breeds using major histocompatibility complex-associated microsatellite markers

Affiliations
  • 1Rede Nordeste de Biotecnologia, Departamento da Medicina Veterinaria, Universidade Estadual do Ceara, 60740-000 Fortaleza, Brazil.
  • 2Departamento da Biologia, Universidade Estadual da Paraiba, Campus Universitario do Bodocongo, 58400-000 Campina Grande, Brazil. mathiasweller@hotmail.com

Abstract

The present study aimed at analyzing the genetic variability of indigenous goat breeds (Capra hircus) using the MHC-associated microsatellite markers BF1, BM1818, BM1258, DYMS1, and SMHCC1. The following breeds were included: Chinese Xuhuai, Indian Changthangi and Pashmina, Kenyan Small East African (SEA) and Galla, and Albanian Vendi. To examine genetic variability, the levels of heterozigosity, degrees of inbreeding, and genetic differences among the breeds were analyzed. The mean number of alleles ranged from nine in the Galla to 14.5 in the Vendi breed. The mean observed heterozygosity and mean expected heterozygosity varied from 0.483 in the Vendi to 0.577 in the Galla breed, and from 0.767 in the SEA to 0.879 in the Vendi breed, respectively. Significant loss of heterozygosity (p < 0.01) indicated that these loci were not in Hardy-Weinberg equilibrium. The mean F IS values ranged from 0.3299 in the SEA to 0.4605 in the Vendi breed with a mean value of 0.3623 in all breeds (p < 0.001). Analysis of molecular variance indicated that 7.14% and 4.74% genetic variation existed among the different breeds and geographic groups, whereas 92.86% and 95.26% existed in the breeds and the geographic groups, respectively (p < 0.001). The microsatellite marker analysis disclosed a high degree of genetic polymorphism. Loss of heterozygosity could be due to genetic drift and endogamy. The genetic variation among populations and geographic groups does not indicate a correlation of genetic differences with geographic distance.

Keyword

genetic variability; indigenous goat breeds; major histocompatibility complex; microsatellites

MeSH Terms

Alleles
Animals
DNA/genetics
Female
Genetic Variation
Goats/*genetics
Major Histocompatibility Complex/*genetics
Male
*Microsatellite Repeats
Polymerase Chain Reaction/veterinary
Polymorphism, Genetic

Reference

1. Aggarwal RAK, Dixit SP, Verma NK, Ahlawat SPS, Kumar Y, Kumar S, Chander R, Singh KP. Population genetics analysis of Mehsana goat based on microsatellite markers. Curr Sci. 2007. 92:1133–1137.
2. Agha SH, Pilla F, Galal S, Shaat I, D'Andrea M, Reale S, Abdelsalam AZA, Li MH. Genetic diversity in Egyptian and Italian goat breeds measured with microsatellite polymorphism. J Anim Breed Genet. 2008. 125:194–200.
Article
3. Ajmone-Marsan P, Negrini R, Crepaldi P, Milanesi E, Gorni C, Valentini A, Cicogna M. Assessing genetic diversity in Italian goat populations using AFLP® markers. Anim Genet. 2001. 32:281–288.
Article
4. Amills M, Jiménez N, Jordana J, Riccardi A, Fernández-Arias A, Guiral J, Bouzat JL, Folch J, Sànchez A. Low diversity in the major histocompatibility complex class II DRB1 gene of the Spanish ibex, Capra pyrenaica. Heredity. 2004. 93:266–272.
Article
5. Araújo AM, Guimarães SEF, Machado TMM, Lopes PS, Pereira CS, Silva FLR, Rodrigues MT, Columbiano VS, Fonseca CG. Genetic diversity between herds of Alpine and Saanen dairy goats and the naturalized Brazilian Moxotó breed. Genet Mol Biol. 2006. 29:67–74.
Article
6. Ayele Z, Peacock C. Improving access to and consumption of animal source foods in rural households: the experiences of a women-focused goat development program in the highlands of Ethiopia. J Nutr. 2003. 133:11 Suppl 2. 3981S–3986S.
Article
7. Barker JSF, Tan SG, Moore SS, Mukherjee TK, Matheson JL, Selvaraj OS. Genetic variation within and relationships among populations of Asian goats (Capra hircus). J Anim Breed Genet. 2001. 118:213–233.
Article
8. Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SLF, Hawkins GA, Toldo SS, Fries R, Grosz MD, Yoo J, Beattie CW. A genetic linkage map for cattle. Genetics. 1994. 136:619–639.
Article
9. Bozkaya F, Kuss AW, Geldermann H. DNA variants of the MHC show location-specific convergence between sheep, goat and cattle. Small Rumin Res. 2007. 70:174–182.
Article
10. Buítkamp J, Filmether MJ, Stear MJ, Epplen JT. Class I and Class II major histocompatibility complex alleles are associated with faecal egg counts following natural, predominantly Ostertagia circumcincta infection. Parasitol Res. 1996. 82:693–696.
11. Cañón J, García D, García-Atance MA, Obexer-Ruff G, Lenstra JA, Ajmone-Marsan P, Dunner S. The ECONOGENE Consortium. Geographical partitioning of goat diversity in Europe and the Middle East. Anim Genet. 2006. 37:327–334.
Article
12. Diez-Tascón C, Littlejohn RP, Almeida PA, Crawford AM. Genetic variation within the Merino sheep breed: analysis of closely related populations using microsatellites. Anim Genet. 2000. 31:243–251.
Article
13. Dixit SP, Verma NK, Ahlawat SPS, Aggarwal RAK, Kumar S, Chander R, Singh KP. Molecular genetic characterization of Kutchi breed goat. Curr Sci. 2008. 95:946–952.
14. Dukkipati VSR, Blair HT, Garrick DJ, Murray A. 'Ovar-Mhc' - Ovine major histocompatibility complex: structure and gene polymorphisms. Genet Mol Res. 2006. 5:581–608.
15. Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform Online. 2005. 1:47–50.
Article
16. Fatima S, Bhong CD, Rank DN, Joshi CG. Genetic variability and bottleneck studies in Zalawadi, Gohilwadi and Surti goat breeds of Gujarat (India) using microsatellites. Small Rumin Res. 2008. 77:58–64.
Article
17. Felsenstein J. An alternating least squares approach to inferring phylogenies from pairwise distances. Syst Biol. 1997. 46:101–111.
Article
18. Food and Agriculture Organization (FAO). The State of the World's Animal Genetic Resources for Food and Agriculture. 2008. Rome: FAO.
19. Geldermann H, Preuss S, Eckert J, Han Y, Ollesch K. Analysis of polymorphic microsatellites within the bovine and ovine prion protein (PRNP) genes. Anim Genet. 2003. 34:283–289.
Article
20. Groth DM, Wetherall JD. Dinucleotide repeat polymorphism within the ovine major histocompatibility complex class I region. Anim Genet. 1994. 25:61.
Article
21. Groth DM, Wetherall JD. Dinucleotide repeat polymorphism adjacent to sheep complement factor B. Anim Genet. 1995. 26:282–283.
Article
22. Hedrick PW, Kim TJ. Singh RS, Krimbas CB, editors. Genetics of complex polymorphisms: parasites and maintenance of the major histocompatibility complex variation. Evolutionary Genetics: From Molecules to Morphology. 2000. 1st ed. Cambridge: Cambridge University Press;204–234.
23. Li MH, Zhao SH, Bian C, Wang HS, Wei H, Liu B, Yu M, Fan B, Chen SL, Zhu MJ, Li SJ, Xiong TA, Li K. Genetic relationships among twelve Chinese indigenous goat populations based on microsatellite analysis. Genet Sel Evol. 2002. 34:729–744.
Article
24. Ligda CH, Altarayrah J, Georgoudis A. the ECONOGENE Consortium. Genetic analysis of Greek sheep breeds using microsatellite markers for setting conservation priorities. Small Rumin Res. 2009. 83:42–48.
Article
25. Miller MP. Tools for Population Genetic Analyses (TFGPA): Windows Program (version 1.3) for the Analysis of Allozyme and Molecular Population Genetic Data. 1997. Flagstaff: University of Northern Arizona.
26. Mucha S, Windig JJ. Effects of incomplete pedigree on genetic management of the Dutch Landrace goat. J Anim Breed Genet. 2009. 126:250–256.
Article
27. Muema EK, Wakhungu JW, Hanotte O, Jianlin H. Genetic diversity and relationship of indigenous goats of Sub-saharan Africa using microsatellite DNA markers. Livest Res Rural Dev. 2009. 21:Article 28.
28. Obexer-Ruff G, Sattler U, Martinez D, Maillard JC, Chartier C, Saitbekova N, Glowatzki ML, Gaillard C. Association studies using random and "candidate" microsatellite loci in two infectious goat diseases. Genet Sel Evol. 2003. 35:Suppl 1. S113–S119.
Article
29. Oliveira JD, Igarashi MLSP, Machado TMM, Miretti MM, Ferro JA, Contel EPB. Structure and genetic relationships between Brazilian naturalized and exotic purebred goat domestic goat (Capra hircus) breeds based on microsatellites. Genet Mol Biol. 2007. 30:356–363.
Article
30. Omondi IA, Baltenweck I, Drucker AG, Obare GA, Zander KK. Valuing goat genetic resources: a pro-poor growth strategy in the Kenyan semi-arid tropics. Trop Anim Health Prod. 2008. 40:583–596.
Article
31. Petroli CD, Paiva SR, Corrêa MPC, McManus C. Genetic monitoring of a Santa Ines herd using microsatellite markers near or linked to the sheep MHC. Rev Bras Zootec. 2009. 38:670–675.
Article
32. Raymond M, Rousset F. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J Hered. 1995. 86:248–249.
Article
33. Rout PK, Joshi MB, Mandal A, Laloe D, Singh L, Thangaraj K. Microsatellite-based phylogeny of Indian domestic goats. BMC Genet. 2008. 9:11.
Article
34. Rumosa Gwaze F, Chimonyo M, Dzama K. Communal goat production in Southern Africa: a review. Trop Anim Health Prod. 2009. 41:1157–1168.
Article
35. Saitbekova N, Gaillard C, Obexer-Ruff G, Dolf G. Genetic diversity in Swiss goat breeds based on Microsatellite analysis. Anim Genet. 1999. 30:36–41.
Article
36. Serrano M, Calvo JH, Martínez M, Marcos-Carcavilla A, Cuevas J, González C, Jurado JJ, de Tejada PD. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed. BMC Genet. 2009. 10:61.
Article
37. Steinfeld H, Wassenaar T, Jutzi S. Livestock production systems in developing countries: status, drivers, trends. Rev Sci Tech. 2006. 25:505–516.
38. Weir BS, Cockerham C. Estimating F-statistics for the analysis of population structure. Evolution. 1984. 38:1358–1370.
Article
39. Xiang-Long L, Valentini A. Genetic diversity of Chinese indigenous goat breeds based on microsatellite markers. J Anim Breed Genet. 2004. 121:350–355.
Article
40. Yang L, Zhao SH, Li K, Peng ZZ, Montgomery GW. Determination of genetic relationships among five indigenous Chinese goat breeds with six microsatellite markers. Anim Genet. 1999. 30:452–455.
Article
Full Text Links
  • JVS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr