Korean J Physiol Pharmacol.  2025 May;29(3):283-291. 10.4196/kjpp.24.182.

Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling

Affiliations
  • 1Department of Neurosurgery, Affiliated Hospital of Jianghan University, Wuhan 430000, China
  • 2Department of Vascular Surgery, Affiliated Hospital of Jianghan University, Wuhan 430000, China

Abstract

Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.

Keyword

Antioxidants; Blood–brain barrier; Subarachnoid hemorrhage; Tight junctions; Traditional Chinese medicine

Figure

  • Fig. 1 Chemical structure of shikonin and experimental design. (A) Chemical structure of shikonin. (B) Experimental design. SAH, subarachnoid hemorrhage; DMSO, dimethyl sulfoxide.

  • Fig. 2 Shikonin alleviates neurological deficits and brain edema in rats after SAH. (A, B) Beam balance test (A) and modified Garcia scoring system (B) were used to determine the neurological function of rats in the sham + DMSO group, sham + shikonin group, SAH + DMSO group, and SAH + shikonin group. (C) Brain water content of rats in the 4 groups was determined to evaluate the extent of brain edema. (D) Representative image of rat brains from the 4 groups. (E) SAH grade in the 4 groups. Values are shown as mean ± standard deviation. SAH, subarachnoid hemorrhage; DMSO, dimethyl sulfoxide. ***p < 0.001.

  • Fig. 3 Shikonin attenuates oxidative stress in the brain cortex of rats after SAH. (A-C) Contents of MDA, GSH, and SOD in the brain cortex of rats were determined using the corresponding assay kits in the sham + DMSO group, sham + shikonin group, SAH + DMSO group, and SAH + shikonin group. (D) ROS content in the brain tissues of rats from each group was determined using a commercial assay kit. Values are shown as mean ± standard deviation. SAH, subarachnoid hemorrhage; MDA, malondialdehyde; GSH, glutathione; SOD, superoxide dismutase; DMSO, dimethyl sulfoxide; ROS, reactive oxygen species. ***p < 0.001.

  • Fig. 4 Shikonin attenuates BBB permeability and upregulates tight junction proteins after SAH. (A) Evans blue staining assay was used to determine the BBB permeability of rats in the sham + DMSO group, sham + shikonin group, SAH + DMSO group, and SAH + shikonin group. (B, C) Protein levels of tight junctions (ZO-1, Occludin, and Claudin5) in the 4 groups were determined using Western blotting. Values are shown as mean ± standard deviation. BBB, blood–brain barrier; SAH, subarachnoid hemorrhage; DMSO, dimethyl sulfoxide; ZO-1, zonula occludens-1. ***p < 0.001.

  • Fig. 5 Shikonin activates the Sirt1/Nrf2/HO-1 signaling in the brain tissues of rats with SAH. (A) Western blotting to determine the protein levels of Sirt1, Nrf2, and HO-1 in the cerebral cortex of rats from the sham + DMSO, sham + shikonin, SAH + DMSO, and SAH + shikonin groups. (B-D) Quantification of the relative protein levels of Sirt1, Nrf2, and HO-1 with normalization to GAPDH. Values are shown as mean ± standard deviation. SAH, subarachnoid hemorrhage; DMSO, dimethyl sulfoxide. ***p < 0.001.


Reference

1. Alwageed HS. 2022; Detection of subarachnoid hemorrhage in computed tomography using association rules mining. Comput Intell Neurosci. 2022:1133819. DOI: 10.1155/2022/1133819. PMID: 36093508. PMCID: PMC9451997.
Article
2. Goldberg J, Schoeni D, Mordasini P, Z'Graggen W, Gralla J, Raabe A, Beck J, Fung C. 2018; Survival and outcome after poor-grade aneurysmal subarachnoid hemorrhage in elderly patients. Stroke. 49:2883–2889. DOI: 10.1161/STROKEAHA.118.022869. PMID: 30571422.
Article
3. Lauzier DC, Jayaraman K, Yuan JY, Diwan D, Vellimana AK, Osbun JW, Chatterjee AR, Athiraman U, Dhar R, Zipfel GJ. 2023; Early brain injury after subarachnoid hemorrhage: incidence and mechanisms. Stroke. 54:1426–1440. DOI: 10.1161/STROKEAHA.122.040072. PMID: 36866673. PMCID: PMC10243167.
Article
4. Rass V, Helbok R. 2019; Early brain injury after poor-grade subarachnoid hemorrhage. Curr Neurol Neurosci Rep. 19:78. DOI: 10.1007/s11910-019-0990-3. PMID: 31468197. PMCID: PMC6715808.
Article
5. Li Y, Wu P, Bihl JC, Shi H. 2020; Underlying mechanisms and potential therapeutic molecular targets in blood-brain barrier disruption after subarachnoid hemorrhage. Curr Neuropharmacol. 18:1168–1179. DOI: 10.2174/1570159X18666200106154203. PMID: 31903882. PMCID: PMC7770641.
Article
6. Sehba FA, Hou J, Pluta RM, Zhang JH. 2012; The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 97:14–37. DOI: 10.1016/j.pneurobio.2012.02.003. PMID: 22414893. PMCID: PMC3327829.
Article
7. Yuan L, Wang Y, Chen Y, Chen X, Li S, Liu X. 2023; Shikonin inhibits immune checkpoint PD-L1 expression on macrophage in sepsis by modulating PKM2. Int Immunopharmacol. 121:110401. DOI: 10.1016/j.intimp.2023.110401. PMID: 37302371.
Article
8. Guo C, He J, Song X, Tan L, Wang M, Jiang P, Li Y, Cao Z, Peng C. 2019; Pharmacological properties and derivatives of shikonin-A review in recent years. Pharmacol Res. 149:104463. DOI: 10.1016/j.phrs.2019.104463. PMID: 31553936.
Article
9. Sun Q, Gong T, Liu M, Ren S, Yang H, Zeng S, Zhao H, Chen L, Ming T, Meng X, Xu H. 2022; Shikonin, a naphthalene ingredient: therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. Phytomedicine. 94:153805. DOI: 10.1016/j.phymed.2021.153805. PMID: 34749177.
Article
10. Mu Z, Guo J, Zhang D, Xu Y, Zhou M, Guo Y, Hou Y, Gao X, Han X, Geng L. 2021; Therapeutic effects of shikonin on skin diseases: a review. Am J Chin Med. 49:1871–1895. DOI: 10.1142/S0192415X21500889. PMID: 34961421.
Article
11. Guo W, Wang X, Sun C, Wang J, Wang T. 2023; Shikonin ameliorates salivary gland damage and inflammation in a mouse model of Sjögren's syndrome by modulating MAPK signaling pathway. Korean J Physiol Pharmacol. 27:357–364. DOI: 10.4196/kjpp.2023.27.4.357. PMID: 37386833. PMCID: PMC10316193.
Article
12. Guo L, Li Y, Li W, Qiu J, Du J, Wang L, Zhang T. 2022; Shikonin ameliorates oxidative stress and neuroinflammation via the Akt/ERK/JNK/NF-κB signalling pathways in a model of Parkinson's disease. Clin Exp Pharmacol Physiol. 49:1221–1231. DOI: 10.1111/1440-1681.13709. PMID: 36054693.
Article
13. Nie S, Zhao J, Huang Y, Zhou C, Gong F, Zhao F. 2021; Study on the effect of shikonin on CD36 expression and phagocytic ability of microglia in the isolated cerebral haemorrhage model. Folia Neuropathol. 59:198–204. DOI: 10.5114/fn.2021.107110. PMID: 34284547.
Article
14. Mahmoud AM, Abd El-Ghafar OAM, Alzoghaibi MA, Hassanein EHM. 2021; Agomelatine prevents gentamicin nephrotoxicity by attenuating oxidative stress and TLR-4 signaling, and upregulating PPARγ and SIRT1. Life Sci. 278:119600. DOI: 10.1016/j.lfs.2021.119600. PMID: 33984362.
Article
15. Arab HH, Ashour AM, Eid AH, Arafa EA, Al Khabbaz HJ, Abd El-Aal SA. 2022; Targeting oxidative stress, apoptosis, and autophagy by galangin mitigates cadmium-induced renal damage: role of SIRT1/Nrf2 and AMPK/mTOR pathways. Life Sci. 291:120300. DOI: 10.1016/j.lfs.2021.120300. PMID: 34999115.
Article
16. Balaha MF, Alamer AA, Eisa AA, Aljohani HM. 2023; Shikonin alleviates gentamicin-induced renal injury in rats by targeting renal endocytosis, SIRT1/Nrf2/HO-1, TLR-4/NF-κB/MAPK, and PI3K/Akt cascades. Antibiotics (Basel). 12:826. DOI: 10.3390/antibiotics12050826. PMID: 37237729. PMCID: PMC10215741.
Article
17. Lin F, Li R, Tu WJ, Chen Y, Wang K, Chen X, Zhao J. 2021; An update on antioxidative stress therapy research for early brain injury after subarachnoid hemorrhage. Front Aging Neurosci. 13:772036. DOI: 10.3389/fnagi.2021.772036. PMID: 34938172. PMCID: PMC8686680.
Article
18. Yuan B, Zhao XD, Shen JD, Chen SJ, Huang HY, Zhou XM, Han YL, Zhou LJ, Lu XJ, Wu Q. 2022; Activation of SIRT1 alleviates ferroptosis in the early brain injury after subarachnoid hemorrhage. Oxid Med Cell Longev. 2022:9069825. DOI: 10.1155/2022/9069825. PMID: 35855863. PMCID: PMC9288286.
Article
19. Wang Y, Pan XF, Liu GD, Liu ZH, Zhang C, Chen T, Wang YH. 2021; FGF-2 suppresses neuronal autophagy by regulating the PI3K/Akt pathway in subarachnoid hemorrhage. Brain Res Bull. 173:132–140. DOI: 10.1016/j.brainresbull.2021.05.017. PMID: 34023434.
Article
20. Shao J, Meng Y, Yuan K, Wu Q, Zhu S, Li Y, Wu P, Zheng J, Shi H. 2023; RU.521 mitigates subarachnoid hemorrhage-induced brain injury via regulating microglial polarization and neuroinflammation mediated by the cGAS/STING/NF-κB pathway. Cell Commun Signal. 21:264. Erratum in: Cell Commun Signal. 2024;22:390. DOI: 10.1186/s12964-023-01274-2. PMID: 37770901. PMCID: PMC10537158.
Article
21. Zhang T, Xu S, Wu P, Zhou K, Wu L, Xie Z, Xu W, Luo X, Li P, Ocak U, Ocak PE, Travis ZD, Tang J, Shi H, Zhang JH. 2019; Mitoquinone attenuates blood-brain barrier disruption through Nrf2/PHB2/OPA1 pathway after subarachnoid hemorrhage in rats. Exp Neurol. 317:1–9. DOI: 10.1016/j.expneurol.2019.02.009. PMID: 30779914.
Article
22. Jia Y, Li Z, Wang T, Fan M, Song J, Lv P, Jin W. 2021; Shikonin attenuates chronic cerebral hypoperfusion-induced cognitive impairment by inhibiting apoptosis via PTEN/Akt/CREB/BDNF signaling. Evid Based Complement Alternat Med. 2021:5564246. DOI: 10.1155/2021/5564246. PMID: 34211568. PMCID: PMC8205575.
Article
23. Shi SS, Zhang HB, Wang CH, Yang WZ, Liang RS, Chen Y, Tu XK. 2015; Propofol attenuates early brain injury after subarachnoid hemorrhage in rats. J Mol Neurosci. 57:538–545. DOI: 10.1007/s12031-015-0634-2. PMID: 26342279.
Article
24. Zhu C, Wang D, Chang C, Liu A, Zhou J, Yang T, Jiang Y, Li X, Jiang W. 2024; Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling. Korean J Physiol Pharmacol. 28:239–252. DOI: 10.4196/kjpp.2024.28.3.239. PMID: 38682172. PMCID: PMC11058545.
Article
25. Xu P, Tao C, Zhu Y, Wang G, Kong L, Li W, Li R, Li J, Zhang C, Wang L, Liu X, Sun W, Hu W. 2021; TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage. J Neuroinflammation. 18:188. DOI: 10.1186/s12974-021-02226-8. PMID: 34461942. PMCID: PMC8406585.
Article
26. Xu W, Yan J, Ocak U, Lenahan C, Shao A, Tang J, Zhang J, Zhang JH. 2021; Melanocortin 1 receptor attenuates early brain injury following subarachnoid hemorrhage by controlling mitochondrial metabolism via AMPK/SIRT1/PGC-1α pathway in rats. Theranostics. 11:522–539. DOI: 10.7150/thno.49426. PMID: 33391490. PMCID: PMC7738864.
Article
27. Zeng H, Chen H, Li M, Zhuang J, Peng Y, Zhou H, Xu C, Yu Q, Fu X, Cao S, Cai J, Yan F, Chen G. 2021; Autophagy protein NRBF2 attenuates endoplasmic reticulum stress-associated neuroinflammation and oxidative stress via promoting autophagosome maturation by interacting with Rab7 after SAH. J Neuroinflammation. 18:210. DOI: 10.1186/s12974-021-02270-4. PMID: 34530854. PMCID: PMC8447596.
Article
28. Wang F, Yao X, Zhang Y, Tang J. 2019; Synthesis, biological function and evaluation of Shikonin in cancer therapy. Fitoterapia. 134:329–339. DOI: 10.1016/j.fitote.2019.03.005. PMID: 30858045.
Article
29. Zhang Y, Zhang H, Wang M, Gao S, Hong L, Hou T, Zhang Y, Zhu Y, Qian F. 2021; Shikonin ameliorates lipoteichoic acidinduced acute lung injury via promotion of neutrophil apoptosis. Mol Med Rep. 23:133. DOI: 10.3892/mmr.2020.11772. PMID: 33313945.
Article
30. Wang L, Li Z, Zhang X, Wang S, Zhu C, Miao J, Chen L, Cui L, Qiao H. 2014; Protective effect of shikonin in experimental ischemic stroke: attenuated TLR4, p-p38MAPK, NF-κB, TNF-α and MMP-9 expression, up-regulated claudin-5 expression, ameliorated BBB permeability. Neurochem Res. 39:97–106. DOI: 10.1007/s11064-013-1194-x. PMID: 24248858.
Article
31. Gan L, Wang ZH, Zhang H, Zhou R, Sun C, Liu Y, Si J, Liu YY, Wang ZG. 2015; Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice. Biomed Environ Sci. 28:148–151.
32. Shi X, Zhen L, Ding H, Chen J, Zhang S, Fu Y. 2019; Role of ATP-sensitive potassium channels and inflammatory response of basilar artery smooth muscle cells in subarachnoid hemorrhage of rabbit and immune-modulation by shikonin. Food Chem Toxicol. 134:110804. DOI: 10.1016/j.fct.2019.110804. PMID: 31505234.
Article
33. Sies H. 2015; Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4:180–183. DOI: 10.1016/j.redox.2015.01.002. PMID: 25588755. PMCID: PMC4309861.
Article
34. Jones DP. 2008; Radical-free biology of oxidative stress. Am J Physiol Cell Physiol. 295:C849–C868. DOI: 10.1152/ajpcell.00283.2008. PMID: 18684987. PMCID: PMC2575825.
Article
35. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. 2017; Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017:8416763. DOI: 10.1155/2017/8416763. PMID: 28819546. PMCID: PMC5551541.
Article
36. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI Jr. 2016; Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 473:4527–4550. DOI: 10.1042/BCJ20160503C. PMID: 27941030.
Article
37. Zhang Y, Lei Y, Yao X, Yi J, Feng G. 2021; Pinoresinol diglucoside alleviates ischemia/reperfusion-induced brain injury by modulating neuroinflammation and oxidative stress. Chem Biol Drug Des. 98:986–996. DOI: 10.1111/cbdd.13956. PMID: 34546621. PMCID: PMC9293043.
Article
38. Han Y, Zhang T, Su J, Zhao Y, Chenchen , Wang , Li X. 2017; Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. J Clin Neurosci. 40:157–162. DOI: 10.1016/j.jocn.2017.03.003. PMID: 28342702.
Article
39. Sies H. 1997; Oxidative stress: oxidants and antioxidants. Exp Physiol. 82:291–295. DOI: 10.1113/expphysiol.1997.sp004024. PMID: 9129943.
Article
40. Tsikas D. 2017; Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem. 524:13–30. DOI: 10.1016/j.ab.2016.10.021. PMID: 27789233.
Article
41. Du H, Zhou X, Shi L, Xia M, Wang Y, Guo N, Hu H, Zhang P, Yang H, Zhu F, Teng Z, Liu C, Zhao M. 2022; Shikonin attenuates cochlear spiral ganglion neuron degeneration by activating Nrf2-ARE signaling pathway. Front Mol Neurosci. 15:829642. DOI: 10.3389/fnmol.2022.829642. PMID: 35283722. PMCID: PMC8908960.
Article
42. Zhong J, Wang Z, Xie Q, Li T, Chen K, Zhu T, Tang Q, Shen C, Zhu J. 2020; Shikonin ameliorates D-galactose-induced oxidative stress and cognitive impairment in mice via the MAPK and nuclear factor-κB signaling pathway. Int Immunopharmacol. 83:106491. DOI: 10.1016/j.intimp.2020.106491. PMID: 32279045.
Article
43. Xia DY, Yuan JL, Jiang XC, Qi M, Lai NS, Wu LY, Zhang XS. 2021; SIRT1 promotes M2 microglia polarization via reducing ROS-mediated NLRP3 inflammasome signaling after subarachnoid hemorrhage. Front Immunol. 12:770744. DOI: 10.3389/fimmu.2021.770744. PMID: 34899720. PMCID: PMC8653696.
Article
44. Zhang Z, Fang J, Zhou J, Ding F, Zhou G, Zhao X, Zhuang Z, Lu Y. 2022; Pterostilbene attenuates subarachnoid hemorrhage-induced brain injury through the SIRT1-dependent Nrf2 signaling pathway. Oxid Med Cell Longev. 2022:3550204. DOI: 10.1155/2022/3550204. PMID: 36506933. PMCID: PMC9729048.
Article
45. Chen L, Xu H, Zhang C, He J, Wang Y. 2024; Semaglutide alleviates early brain injury following subarachnoid hemorrhage by suppressing ferroptosis and neuroinflammation via SIRT1 pathway. Am J Transl Res. 16:1102–1117. DOI: 10.62347/IZGJ1332. PMID: 38715815. PMCID: PMC11070367.
Article
46. Mao H, Wang L, Xiong Y, Jiang G, Liu X. 2022; Fucoxanthin attenuates oxidative damage by activating the Sirt1/Nrf2/HO-1 signaling pathway to protect the kidney from ischemia-reperfusion injury. Oxid Med Cell Longev. 2022:7444430. DOI: 10.1155/2022/7444430. PMID: 35126819. PMCID: PMC8816562.
Article
47. Ma W, Guo W, Shang F, Li Y, Li W, Liu J, Ma C, Teng J. 2020; Bakuchiol alleviates hyperglycemia-induced diabetic cardiomyopathy by reducing myocardial oxidative stress via activating the SIRT1/Nrf2 signaling pathway. Oxid Med Cell Longev. 2020:3732718. DOI: 10.1155/2020/3732718. PMID: 33062139. PMCID: PMC7545423.
Article
48. Zhang X, Wu Q, Lu Y, Wan J, Dai H, Zhou X, Lv S, Chen X, Zhang X, Hang C, Wang J. 2018; Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free Radic Biol Med. 124:504–516. DOI: 10.1016/j.freeradbiomed.2018.06.035. PMID: 29966698. PMCID: PMC6286712.
Article
49. Ma X, Guo Z, Zhao W, Chen L. 2023; Sweroside plays a role in mitigating high glucose-induced damage in human renal tubular epithelial HK-2 cells by regulating the SIRT1/NF-κB signaling pathway. Korean J Physiol Pharmacol. 27:533–540. DOI: 10.4196/kjpp.2023.27.6.533. PMID: 37884285. PMCID: PMC10613573.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr