Korean J Orthod.  2025 Mar;55(2):95-104. 10.4041/kjod24.102.

Long-term structural and functional nasomaxillary evolution of children with mouth-breathing after rapid maxillary expansion: An 8-year follow-up study

Affiliations
  • 1Department of Otorhinolaryngology, State University of Campinas, Campinas, Brazil
  • 2Department of Radiology, State University of Campinas, Campinas, Brazil
  • 3Department of Pediatrics, State University of Campinas, Campinas, Brazil

Abstract


Objective
To evaluate the effects of rapid maxillary expansion (RME) on nasal patency and nasomaxillary dimensions in children and adolescents with mouthbreathing through 8 years of clinical follow-up.
Methods
RME was performed using a Hyrax orthodontic appliance in 28 mouth-breathers (6–13 years old). During follow-up, objective tests of nasal respiratory function were conducted, such as acoustic rhinometry, which provided the minimum cross-sectional areas of the nasal cavity, and active anterior computed rhinomanometry, which measured inspiratory nasal resistance. The tomographic widths of the coronal sections of the nose and maxilla were also measured. Fisher’s exact test and the Mann–Whitney U test were used to compare categorical and numerical variables, respectively, in mouth-breathers with and without allergic rhinitis. Temporal evolution was assessed using generalized estimating equation models. Statistical significance was set at P < 0.05.
Results
There was a reduction in inspiratory resistance after RME with a stable improvement in nasal patency during the 8-year follow-up period (P = 0.0179). All nasal and maxillary tomographic widths showed statistically significant increases in the short-term (P < 0.0001), and most of them showed significant increases in the long-term when compared with the pre-expansion period. Tomographic measurements were not influenced by allergic rhinitis.
Conclusions
Our study showed that RME promoted and maintained the widening of the posterior maxillary structure in children and adolescents with mouth-breathing, with a decrease in inspiratory nasal resistance during the 8-year follow-up period. These findings highlight the importance of RME in mouth-breathers with maxillary atresia.

Keyword

Child; Mouth-breathing; Palatal expansion technique

Figure

  • Figure 1 Nasal and maxillary widths measured in the coronal sections of computed tomography scans: nasal width 1, nasal width 2, maxillary width 1, maxillary width 2, and maxillary width 3.

  • Figure 2 Flowchart with the examinations performed and the number of participants at each follow-up, before and after RME. T1, initial time; T2, 6 months after rapid maxillary expansion (RME); T3, 10 months after RME; T4, 14 months after RME; T5, 18 months after RME; T6, 8 years after RME. AR, acoustic rhinometry; AAR, active anterior computerized rhinomanometry; CT, computed tomography; n, number of participants.

  • Figure 3 Graphs representing statistically significant results for MCA1 and inspiratory nasal resistance over 8 years of follow-up. T1, initial time; T2, 6 months after rapid maxillary expansion (RME); T3, 10 months after RME; T4, 14 months after RME; T5, 18 months after RME; T6, 8 years after RME.

  • Figure 4 Computed tomography mean measurements of the nasal and maxillary transverse widths at initial time, 6 months after rapid maxillary expansion (RME) and 8 years after RME. A, Nasal width 1; B, nasal width 2; C, maxillary width 1; D, maxillary width 2; E, maxillary width 3.

  • Figure 5 Percentage distribution of Angle’s molar Class I, II, and III assessed at initial time, 6 months after rapid maxillary expansion (RME), and 8 years after RME.


Reference

References

1. Kukwa A, Dymek A, Galazka A, Krzeski A, Kukwa W. 2014; A new approach to studying the nasal and oral breathing routes. Otolaryngol Pol. 68:112–8. https://doi.org/10.1016/j.otpol.2013.10.008. DOI: 10.1016/j.otpol.2013.10.008. PMID: 24837905.
2. Grippaudo C, Paolantonio EG, Antonini G, Saulle R, La Torre G, Deli R. 2016; Association between oral habits, mouth breathing and malocclusion. Acta Otorhinolaryngol Ital. 36:386–94. https://doi.org/10.14639/0392-100x-770. DOI: 10.14639/0392-100X-770. PMID: 27958599. PMCID: PMC5225794. PMID: 9f254e62f5264738874a19911835c6a2.
3. Morais-Almeida M, Wandalsen GF, Solé D. 2019; Growth and mouth breathers. J Pediatr (Rio J). 95 Suppl 1:66–71. 11.005. DOI: 10.1016/j.jped.2018.11.005. PMID: 30611649.
4. Abdelghany AM, Elsamanody AN. 2023; A simple home test to differentiate habitual from pathological mouth breathing. Int J Pediatr Otorhinolaryngol. 174:111719. https://doi.org/10.1016/j.ijporl.2023.111719. DOI: 10.1016/j.ijporl.2023.111719. PMID: 37738815.
5. Tang H, Liu Q, Lin JH, Zeng H. 2019; [Three-dimensional morphological analysis of the palate of mouth-breathing children in mixed dentition]. Hua Xi Kou Qiang Yi Xue Za Zhi. 37:389–93. Chinese.
6. Koç O, Koç N, Jacob HB. 2024; Effect of different palatal expanders with miniscrews in surgically assisted rapid palatal expansion: a non-linear finite element analysis. Dental Press J Orthod. 29:e2423195. https://doi.org/10.1590/2177-6709.29.1.e2423195.oar. DOI: 10.1590/2177-6709.29.1.e2423195.oar. PMID: 38451569. PMCID: PMC10914319. PMID: 89985a21cd6f4367a4dbfdb7bcee2150.
7. Ferrillo M, Daly K, Pandis N, Fleming PS. 2024; The effect of vertical skeletal proportions, skeletal maturation, and age on midpalatal suture maturation: a CBCT-based study. Prog Orthod. 25:4. https://doi.org/10.1186/s40510-023-00504-0. DOI: 10.1186/s40510-023-00504-0. PMID: 38311670. PMCID: PMC10838892. PMID: 9fcd18eaf6cd4e5bb2615d57783eedac.
8. Benetti M, Montresor L, Cantarella D, Zerman N, Spinas E. 2024; Does miniscrew-assisted rapid palatal expansion influence upper airway in adult patients? A scoping review. Dent J (Basel). 12:60. https://doi.org/10.3390/dj12030060. DOI: 10.3390/dj12030060. PMID: 38534284. PMCID: PMC10969306. PMID: c9d83c4fa4e249f8b401c549b2946292.
9. Sakai RH, de Assumpção MS, Ribeiro JD, Sakano E. 2021; Impact of rapid maxillary expansion on mouth-breathing children and adolescents: a systematic review. J Clin Exp Dent. 13:e1258–70. https://doi.org/10.4317/jced.58932. DOI: 10.4317/jced.58932. PMID: 34987719. PMCID: PMC8715551.
10. Garrocho-Rangel A, Rosales-Berber M, Ballesteros-Torres A, Hernández-Rubio Z, Flores-Velázquez J, Yáñez-González E, et al. 2023; Rapid maxillary expansion and its consequences on the nasal and oropharyngeal anatomy and breathing function of children and adolescents: an umbrella review. Int J Pediatr Otorhinolaryngol. 171:111633. https://doi.org/10.1016/j.ijporl.2023.111633. DOI: 10.1016/j.ijporl.2023.111633. PMID: 37421834.
11. Niu X, Di Carlo G, Cornelis MA, Cattaneo PM. 2020; Three-dimensional analyses of short- and long-term effects of rapid maxillary expansion on nasal cavity and upper airway: a systematic review and meta-analysis. Orthod Craniofac Res. 23:250–76. https://doi.org/10.1111/ocr.12378. DOI: 10.1111/ocr.12378. PMID: 32248642.
12. Combs A, Paredes N, Dominguez-Mompell R, Romero-Maroto M, Zhang B, Elkenawy I, et al. 2024; Long-term effects of maxillary skeletal expander treatment on functional breathing. Korean J Orthod. 54:59–68. https://doi.org/10.4041/kjod23.090. DOI: 10.4041/kjod23.090. PMID: 38268461. PMCID: PMC10811361.
13. Matsumoto MA, Itikawa CE, Valera FC, Faria G, Anselmo-Lima WT. 2010; Long-term effects of rapid maxillary expansion on nasal area and nasal airway resistance. Am J Rhinol Allergy. 24:161–5. https://doi.org/10.2500/ajra.2010.24.3440. DOI: 10.2500/ajra.2010.24.3440. PMID: 20338118.
14. Brozek JL, Bousquet J, Baena-Cagnani CE, Bonini S, Canonica GW, Casale TB, et al. 2010; Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol. 126:466–76. https://doi.org/10.1016/j.jaci.2010.06.047. DOI: 10.1016/j.jaci.2010.06.047. PMID: 20816182.
15. Clement PA, Gordts F. 2005; Consensus report on acoustic rhinometry and rhinomanometry. Rhinology. 43:169–79. https://pubmed.ncbi.nlm.nih.gov/16218509/.
16. Cappellette M Jr, Alves F, Nagai LHY, Fujita RR, Pignatari SSN. 2017; Impact of rapid maxillary expansion on nasomaxillary complex volume in mouth-breathers. Dental Press J Orthod. 22:79–88. https://doi.org/10.1590/2177-6709.22.3.079-088.oar. DOI: 10.1590/2177-6709.22.3.079-088.oar. PMID: 28746491. PMCID: PMC5525449.
17. Monini S, Malagola C, Villa MP, Tripodi C, Tarentini S, Malagnino I, et al. 2009; Rapid maxillary expansion for the treatment of nasal obstruction in children younger than 12 years. Arch Otolaryngol Head Neck Surg. 135:22–7. https://doi.org/10.1001/archoto.2008.521. DOI: 10.1001/archoto.2008.521. PMID: 19153303.
18. Torre H, Alarcón JA. 2012; Changes in nasal air flow and school grades after rapid maxillary expansion in oral breathing children. Med Oral Patol Oral Cir Bucal. 17:e865–70. https://doi.org/10.4317/medoral.17810. DOI: 10.4317/medoral.17810. PMID: 22322516. PMCID: PMC3482535.
19. Langer MR, Itikawa CE, Valera FC, Matsumoto MA, Anselmo-Lima WT. 2011; Does rapid maxillary expansion increase nasopharyngeal space and improve nasal airway resistance? Int J Pediatr Otorhinolaryngol. 75:122–5. https://doi.org/10.1016/j.ijporl.2010.10.023. DOI: 10.1016/j.ijporl.2010.10.023. PMID: 21093065.
20. Christie KF, Boucher N, Chung CH. 2010; Effects of bonded rapid palatal expansion on the transverse dimensions of the maxilla: a cone-beam computed tomography study. Am J Orthod Dentofacial Orthop. 137(4 Suppl):S79–85. https://doi.org/10.1016/j.ajodo.2008.11.024. DOI: 10.1016/j.ajodo.2008.11.024. PMID: 20381765.
21. Yavan MA, Kaya S, Kervancioglu P, Kocahan S. 2021; Evaluation of effects of a modified asymmetric rapid maxillary expansion appliance on the upper airway volume by cone beam computed tomography. J Dent Sci. 16:58–64. https://doi.org/10.1016/j.jds.2020.05.019. DOI: 10.1016/j.jds.2020.05.019. PMID: 33384779. PMCID: PMC7770327.
22. Baratieri C, Alves M Jr, Bolognese AM, Nojima MC, Nojima LI. 2014; Changes in skeletal and dental relationship in Class II Division I malocclusion after rapid maxillary expansion: a prospective study. Dental Press J Orthod. 19:75–81. https://doi.org/10.1590/2176-9451.19.3.075-081.oar. DOI: 10.1590/2176-9451.19.3.075-081.oar. PMID: 25162569. PMCID: PMC4296618. PMID: fde34976ba24448286bc40372135cbca.
23. Baratieri C, Alves M Jr, Sant'anna EF, Nojima Mda C, Nojima LI. 2011; 3D mandibular positioning after rapid maxillary expansion in Class II malocclusion. Braz Dent J. 22:428–34. https://doi.org/10.1590/s0103-64402011000500014. DOI: 10.1590/S0103-64402011000500014. PMID: 22011901.
24. Tagawa DT, Wolosker AMB, Florez BM, Dominguez GC, Yamashita HK, Aidar LAA, et al. 2024; Temporomandibular joint disc position and shape in patients submitted to two protocols of rapid maxillary expansion and face mask therapy: a randomized clinical trial. Orthod Craniofac Res. 27:615–25. https://doi.org/10.1111/ocr.12777. DOI: 10.1111/ocr.12777. PMID: 38456750.
25. Carvalho PTA, Junior MC, Wandalsen GF, Solé D. 2023; Rapid maxillary expansion and nasal patency in mouth breathing children with maxillary atresia due to or not due to allergic rhinitis. Allergol Immunopathol (Madr). 51:55–62. https://doi.org/10.15586/aei.v51i4.853. DOI: 10.15586/aei.v51i4.853. PMID: 37422780.
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr