Prog Med Phys.  2024 Dec;35(4):178-204. 10.14316/pmp.2024.35.4.178.

Development of an Instantaneously Interpretable Real-Time Dosimeter System for Quality Assurance of a Medical Linear Accelerator

Affiliations
  • 1Department of Radiation Convergence Engineering, Yonsei University, Wonju, Korea
  • 2Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
  • 3Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 4Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea

Abstract

Purpose
Modern radiotherapy delivers radiation doses to targets within a few minutes using intricate multiple-beam segments determined with multi-leaf collimators (MLC). Therefore, we propose a scintillator-based dosimetry system capable of assessing the dosimetric and mechanical performance of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in real time.
Methods
The dosimeter was equipped with a scintillator plate and two digital cameras. The dose distribution was generated by applying deep learning-based signal processing to correct the intrinsic characteristics of the camera sensor and a tomographic image reconstruction technique to rectify the geometric distortion of the recorded video. Dosimetric evaluations were performed using a gamma analysis against a two-dimensional array and radiochromic film measurements for 20 clinical cases. The average difference in the MLC position measurements and machine log files was tested for the applicability of the mechanical quality assurance (QA) of MLCs.
Results
The agreement of the dose distribution in the IMRT and VMAT plans was clinically acceptable between the proposed system and conventional dosimeters. The average differences in the MLC positions for the IMRT/VMAT plans were 1.7010/2.8107 mm and 1.4722/2.7713 mm in banks A and B, respectively.
Conclusions
In this study, we developed an instantaneously interpretable real-time dosimeter for QA in a medical linear accelerator using a scintillator plate and digital cameras. The feasibility of the proposed system was investigated using dosimetric and mechanical evaluations in the IMRT and VMAT plans. The developed system has clinically acceptable accuracy in both the dosimetric and mechanical QAs of the IMRT and VMAT plans.

Keyword

Dosimeter; Real-time; Deep learning; Dose rate; Multi-leaf collimators

Figure

  • Fig. 1 Experimental setup of the developed dosimeter with a scintillator plate and complementary metal-oxide-semiconductor based digital cameras.

  • Fig. 2 Simplified flow chart of the signal processing in the developed system. Output correction is made in the signal processing. IMRT, intensity-modulated radiotherapy; VMAT, volumetric-modulated arc therapy; FT, Fourier transformed.

  • Fig. 3 Extracted mask from the recorded videos of the (a) IMRT and (b) VMAT plans by the thresholding method. The mask of the IMRT plan was extracted from the segmented image accumulated during the beam-on time, whereas that of the VMAT plan was obtained from the single-frame image corresponding to the CP. IMRT, intensity-modulated radiotherapy; VMAT, volumetric-modulated arc therapy; CP, control point.

  • Fig. 4 (a) Comparison of the output factors between the ionization chamber and proposed system before the output correction and (b) correction curve of the proposed dosimeter in the solid water phantom thickness of 5 cm.

  • Fig. 5 The linear response between the computed and actual field sizes. The computed square root field size was calculated from the extracted masks of the recorded videos.

  • Fig. 6 A simplified diagram of mask extraction in the VMAT plan’s recorded video images employing the cycleGAN model. IMRT, intensity-modulated radiotherapy; TPS, treatment planning system; DICOM-RT, digital imaging and communication in medicine of radiotherapy; VMAT, volumetric-modulated arc therapy.

  • Fig. 7 Comparison of the following signals measured by the proposed dosimeter among the different dose rate settings of the TrueBeam STx (Varian Medical Systems): (a) periodically attenuated signals due to the interference of the sampling frequency between the linear accelerator and cameras, (b) response to the dose rates in the single frame and accumulated frames, and (c) calibrated signal. MU, monitor unit.

  • Fig. 8 Flowchart of the iterative Fourier transform (FT)-based aliasing correction algorithm. DC, direct current.

  • Fig. 9 (a) Examples of the recorded video with geometric distortion (left) and corresponding dose map corrected with the tomographic image reconstruction technique (right). The geometric distortion of the recorded video was corrected by considering the proposed dosimeter as a (b) digital synthesis model.

  • Fig. 10 An example of the multi-leaf collimators (MLC) mask generation in the intensity-modulated radiotherapy (IMRT) plan.

  • Fig. 11 An example of the multi-leaf collimators (MLC) mask generation in the volumetric-modulated arc therapy (VMAT) plan. CP, control point; WaveUNet, wavelet-assisted UNet.

  • Fig. 12 A simplified diagram representing the network structure of the WaveUNet for extracting the multileaf collimator mask from the control point dose image in the volumetric modulated arc therapy case.

  • Fig. 13 A comparison of the (a) correcting methods for geometric distortion and dose profiles in field sizes of (b) 5×5, (c) 10×10, and (d) 20×20 cm2 measured along AB¯¯.

  • Fig. 14 A comparison of the (a) reconstruction algorithms for geometric distortion and dose profiles in field sizes of (b) 5×5, (c) 10×10, and (d) 20×20 cm2 measured along CD¯¯. FBP, filtered back projection; MLEM, maximum-likelihood estimation–maximization.

  • Fig. 15 A comparison of the characteristics between the proposed dosimeter, ionization chamber, and EBT3 film analyzed in terms of the (a) output factor, (b) dose linearity, and (c) dose rate response. MU, monitor unit.

  • Fig. 16 (a) A comparison of mask extraction using UNet and proposed algorithm, and (b) enlarged images inside box A. DICOM-RT, digital imaging and communication in medicine of radiotherapy.

  • Fig. 17 A comparison of the (a) single-segment dose maps from the intensity-modulated radiotherapy plans and dose profiles measured along EF¯¯ in fields (b) 1, (c) 2, and (d) 3. 2D, two-dimensional.

  • Fig. 18 Examples of the measured and predicted dose rates from the developed dosimeter: (a) measured dose and estimated equivalent field sizes of the pelvic IMRT case, (b) predicted dose rates of LINAC in the pelvic IMRT case, (c) measured dose and estimated equivalent field sizes in the pelvic VMAT case, and (d) predicted dose rates of LINAC in the pelvic VMAT case. IMRT, intensity-modulated radiotherapy; LINAC, linear accelerator; VMAT, volumetric-modulated arc therapy; MU, monitor unit.


Reference

References

1. Brahme A. 1988; Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol. 12:129–140. DOI: 10.1016/0167-8140(88)90167-3. PMID: 3406458.
2. Otto K. 2008; Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 35:310–317. DOI: 10.1118/1.2818738. PMID: 18293586.
3. Ling CC, Burman C, Chui CS, Kutcher GJ, Leibel SA, LoSasso T, et al. 1996; Conformal radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multileaf collimation. Int J Radiat Oncol Biol Phys. 35:721–730. DOI: 10.1016/0360-3016(96)00174-5. PMID: 8690638.
4. Bortfeld T, Boyer AL, Schlegel W, Kahler DL, Waldron TJ. 1994; Realization and verification of three-dimensional conformal radiotherapy with modulated fields. Int J Radiat Oncol Biol Phys. 30:899–908. DOI: 10.1016/0360-3016(94)90366-2. PMID: 7960993.
5. Chui CS, LoSasso T, Spirou S. 1994; Dose calculation for photon beams with intensity modulation generated by dynamic jaw or multileaf collimations. Med Phys. 21:1237–1244. DOI: 10.1118/1.597206. PMID: 7799865.
6. Van Esch A, Bohsung J, Sorvari P, Tenhunen M, Paiusco M, Iori M, et al. 2002; Acceptance tests and quality control (QC) procedures for the clinical implementation of intensity modulated radiotherapy (IMRT) using inverse planning and the sliding window technique: experience from five radiotherapy departments. Radiother Oncol. 65:53–70. DOI: 10.1016/S0167-8140(02)00174-3. PMID: 12413675.
7. Low DA, Moran JM, Dempsey JF, Dong L, Oldham M. 2011; Dosimetry tools and techniques for IMRT. Med Phys. 38:1313–1338. DOI: 10.1118/1.3514120. PMID: 21520843.
8. Han Y. 2013; Review on the pre-treatment quality assurance for intensity modulated radiation therapy. Prog Med Phys. 24:213–219. DOI: 10.14316/pmp.2013.24.4.213.
9. Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D, et al. 2009; IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys. 36:5359–5373. DOI: 10.1118/1.3238104. PMID: 19994544.
10. Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, et al. Task Group 142, American Association of Physicists in Medicine. 2009; Task Group 142 report: quality assurance of medical accelerators. Med Phys. 36:4197–4212. DOI: 10.1118/1.3190392. PMID: 19810494.
11. Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al. 2018; Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med Phys. 45:e53–e83. DOI: 10.1002/mp.12810. PMCID: PMC5807157.
12. Mehrens H, Taylor P, Followill DS, Kry SF. 2020; Survey results of 3D-CRT and IMRT quality assurance practice. J Appl Clin Med Phys. 21:70–76. DOI: 10.1002/acm2.12885. PMID: 32351006. PMCID: PMC7386182.
13. Ju SG, Han Y, Kum O, Cheong KH, Shin EH, Shin JS, et al. 2010; Comparison of film dosimetry techniques used for quality assurance of intensity modulated radiation therapy. Med Phys. 37:2925–2933. DOI: 10.1118/1.3395574. PMID: 20632604.
14. Sharma M, Singh R, Dutt S, Tomar P, Trivedi G, Robert N. 2021; Effect of absorbed dose on post-irradiation coloration and interpretation of polymerization reaction in the Gafchromic EBT3 film. Radiation Physics Chem. 187:109569. DOI: 10.1016/j.radphyschem.2021.109569.
15. McCurdy BM, Luchka K, Pistorius S. 2001; Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device. Med Phys. 28:911–924. DOI: 10.1118/1.1374244. PMID: 11439488.
16. Van Esch A, Depuydt T, Huyskens DP. 2004; The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields. Radiother Oncol. 71:223–234. DOI: 10.1016/j.radonc.2004.02.018. PMID: 15110457.
17. Lee C, Menk F, Cadman P, Greer PB. 2009; A simple approach to using an amorphous silicon EPID to verify IMRT planar dose maps. Med Phys. 36:984–992. DOI: 10.1118/1.3075817. PMID: 19378759.
18. Warkentin B, Steciw S, Rathee S, Fallone BG. 2003; Dosimetric IMRT verification with a flat-panel EPID. Med Phys. 30:3143–3155. DOI: 10.1118/1.1625440. PMID: 14713081.
19. McCurdy BM, Greer PB. 2009; Dosimetric properties of an amorphous-silicon EPID used in continuous acquisition mode for application to dynamic and arc IMRT. Med Phys. 36:3028–3039. DOI: 10.1118/1.3148822. PMID: 19673202.
20. Nelms BE, Rasmussen KH, Tome WA. 2010; Evaluation of a fast method of EPID-based dosimetry for intensity-modulated radiation therapy. J Appl Clin Med Phys. 11:3185. DOI: 10.1120/jacmp.v11i2.3185. PMID: 20592703. PMCID: PMC2897728.
21. Ansbacher W. 2006; Three-dimensional portal image-based dose reconstruction in a virtual phantom for rapid evaluation of IMRT plans. Med Phys. 33:3369–3382. DOI: 10.1118/1.2241997. PMID: 17022233.
22. Rowshanfarzad P, Sabet M, O'Connor DJ, Greer PB. 2012; Improvement of Varian a-Si EPID dosimetry measurements using a lead-shielded support-arm. Med Dosim. 37:145–151. DOI: 10.1016/j.meddos.2011.06.003. PMID: 21925865.
23. Ko L, Kim JO, Siebers JV. 2004; Investigation of the optimal backscatter for an aSi electronic portal imaging device. Phys Med Biol. 49:1723–1738. DOI: 10.1088/0031-9155/49/9/010. PMID: 15152927.
24. Rowshanfarzad P, Sabet M, O'Connor DJ, Greer PB. 2010; Reduction of the effect of non-uniform backscatter from an E-type support arm of a Varian a-Si EPID used for dosimetry. Phys Med Biol. 55:6617–6632. DOI: 10.1088/0031-9155/55/22/003. PMID: 20962364.
25. Boylan C, McWilliam A, Johnstone E, Rowbottom C. 2012; The impact of continuously-variable dose rate VMAT on beam stability, MLC positioning, and overall plan dosimetry. J Appl Clin Med Phys. 13:4023. DOI: 10.1120/jacmp.v13i6.4023. PMID: 23149797. PMCID: PMC5718531.
26. Bertelsen A, Lorenzen EL, Brink C. 2011; Validation of a new control system for Elekta accelerators facilitating continuously variable dose rate. Med Phys. 38:4802–4810. DOI: 10.1118/1.3615621. PMID: 21928653.
27. Nicolini G, Clivio A, Cozzi L, Fogliata A, Vanetti E. 2011; On the impact of dose rate variation upon RapidArc® implementation of volumetric modulated arc therapy. Med Phys. 38:264–271. DOI: 10.1118/1.3528214. PMID: 21361195.
28. Baily NA, Horn RA, Kampp TD. 1980; Fluoroscopic visualization of megavoltage therapeutic x ray beams. Int J Radiat Oncol Biol Phys. 6:935–939. DOI: 10.1016/0360-3016(80)90341-7. PMID: 6782046.
29. Boon SN, van Luijk P, Schippers JM, Meertens H, Denis JM, Vynckier S, et al. 1998; Fast 2D phantom dosimetry for scanning proton beams. Med Phys. 25:464–475. DOI: 10.1118/1.598221. PMID: 9571612.
30. Ding L, Wu Q, Wang Q, Li Y, Perks RM, Zhao L. 2020; Advances on inorganic scintillator-based optic fiber dosimeters. EJNMMI Phys. 7:60. DOI: 10.1186/s40658-020-00327-6. PMID: 33025267. PMCID: PMC7538482.
31. Goiffon V, Virmontois C, Magnan P, Cervantes P, Corbière F, Estribeau M, et al. 2010. Sep. 20-23. Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes. Paper presented at: Proc. SPIE 7826, Sensors, Systems, and Next-Generation Satellites XIV, 78261S. Toulouse, France: DOI: 10.1117/12.868443.
32. Tan J, Büttgen B, Theuwissen AJP. 2010. Oct. 25-27. Radiation effects on CMOS image sensors due to X-Rays. Paper presented at: The Eighth International Conference on Advanced Semiconductor Devices and Microsystems. The Eighth International Conference on Advanced Semiconductor Devices and Microsystems;Smolenice, Slovakia: 279–282. DOI: 10.1109/ASDAM.2010.5667007. PMCID: PMC2829386.
33. Huber A, Sergienko G, Kinna D, Huber V, Milocco A, Mercadier L. 2017; Response of the imaging cameras to hard radiation during JET operation. Fusion Eng Des. 123:669–673. DOI: 10.1016/j.fusengdes.2017.03.167.
34. Boon SN, van Luijk P, Böhringer T, Coray A, Lomax A, Pedroni E, et al. 2000; Performance of a fluorescent screen and CCD camera as a two-dimensional dosimetry system for dynamic treatment techniques. Med Phys. 27:2198–2208. DOI: 10.1118/1.1289372. PMID: 11099186.
35. Petric MP, Robar JL, Clark BG. 2006; Development and characterization of a tissue equivalent plastic scintillator based dosimetry system. Med Phys. 33:96–105. DOI: 10.1118/1.2140118. PMID: 16485414.
36. Collomb-Patton V, Boher P, Leroux T, Fontbonne JM, Vela A, Batalla A. 2009; The DOSIMAP, a high spatial resolution tissue equivalent 2D dosimeter for LINAC QA and IMRT verification. Med Phys. 36:317–328. DOI: 10.1118/1.3013703. PMID: 19291971.
37. Guillot M, Beaulieu L, Archambault L, Beddar S, Gingras L. 2011; A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy. Med Phys. 38:6763–6774. DOI: 10.1118/1.3664007. PMID: 22149858.
38. Zin HM, Harris EJ, Osmond JP, Allinson NM, Evans PM. 2013; Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor. Phys Med Biol. 58:3359–3375. DOI: 10.1088/0031-9155/58/10/3359. PMID: 23615376.
39. Miao X, Sim T. 2005. Sep. 14. Ambient image recovery and rendering from flash photographs. Paper presented at: IEEE International Conference on Image Processing 2005. Genova, Italy: II–1038. DOI: 10.1109/ICIP.2005.1530236.
40. Field R. 2017. Introduction to clinical digital photography. Gauteng: Modern Dentistry Media. Available from: http://www.moderndentistrymedia.com/dec_jan2018/field.pdf. cited 2024 Sep 22.
41. Wueller D. 2006. Feb. 15-19. Evaluating digital cameras. Paper presented at: Proc. SPIE 6069, Digital Photography II, 60690K. San Jose, CA, USA: DOI: 10.1117/12.643727.
42. Hsu WF, Chuang KW, Hsu YC. 2000. Jul. 26-28. Comparisons of the camera OECF, the ISO speed, and the SFR of digital still-picture cameras. Paper presented at: Proc. SPIE 4080, Input/Output and Imaging Technolgies II. Taipei, Taiwan: DOI: 10.1117/12.389434.
43. Hu Y, Zhu TC. 2011; Backscatter correction factor for megavoltage photon beam. Med Phys. 38:5563–5568. DOI: 10.1118/1.3633903. PMID: 21992374.
44. Zhu TC, Ahnesjö A, Lam KL, Li XA, Ma CM, Palta JR, et al. AAPM Therapy Physics Committee Task Group 74. 2009; Report of AAPM Therapy Physics Committee Task Group 74: in-air output ratio, Sc, for megavoltage photon beams. Med Phys. 36:5261–5291. DOI: 10.1118/1.3227367. PMID: 19994536.
45. Hesamian MH, Jia W, He X, Kennedy P. 2019; Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging. 32:582–596. DOI: 10.1007/s10278-019-00227-x. PMID: 31144149. PMCID: PMC6646484.
46. Zhou T, Ruan S, Canu S. 2019; A review: deep learning for medical image segmentation using multi-modality fusion. Array. 3-4:100004. DOI: 10.1016/j.array.2019.100004.
47. Ronneberger O, Fischer P, Brox T. 2015. Oct. 5-9. U-Net: convolutional networks for biomedical image segmentation. Paper presented at: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Munich, Germany: DOI: 10.1007/978-3-319-24574-4_28.
48. Ye JC, Han Y, Cha E. 2018; Deep convolutional framelets: a general deep learning framework for inverse problems. SIAM J Imaging Sci. 11:991–1048. DOI: 10.1137/17M1141771.
49. Han Y, Ye JC. 2018; Framing U-Net via deep convolutional framelets: application to sparse-view CT. IEEE Trans Med Imaging. 37:1418–1429. DOI: 10.1109/TMI.2018.2823768. PMID: 29870370.
50. Ge Y, Wei D, Xue Z, Wang Q, Zhou X, Zhan Y, et al. 2019. Apr. 8-11. Unpaired Mr to CT Synthesis with explicit structural constrained adversarial learning. Paper presented at: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). Venice, Italy: 1096–1099. DOI: 10.1109/ISBI.2019.8759529. PMID: 32254777.
51. Ge Y, Xue Z, Cao T, Liao S. 2019. Mar. 15. Unpaired whole-body MR to CT synthesis with correlation coefficient constrained adversarial learning. Paper presented at: Proc. SPIE 10949, Medical Imaging 2019: Image Processing, 1094905. San Diego, CA, USA: DOI: 10.1117/12.2512479.
52. Lee D, Jeong SW, Kim SJ, Cho H, Park W, Han Y. 2021; Improvement of megavoltage computed tomography image quality for adaptive helical tomotherapy using cycleGAN-based image synthesis with small datasets. Med Phys. 48:5593–5610. DOI: 10.1002/mp.15182. PMID: 34418109.
53. He K, Zhang X, Ren S, Sun J. 2015; Deep residual learning for image recognition. arXiv. https://doi.org/10.48550/arXiv.1512.03385. DOI: 10.1109/CVPR.2016.90. PMID: 26180094.
54. Isola P, Zhu JY, Zhou T, Efros AA. 2017. Jul. 21-26. Image-to-image translation with conditional adversarial networks. Paper presented at: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: DOI: 10.1109/CVPR.2017.632.
55. Lasio G, Guerrero M, Goetz W, Lima F, Baulch JE. 2014; Effect of varying dose-per-pulse and average dose rate in X-ray beam irradiation on cultured cell survival. Radiat Environ Biophys. 53:671–676. DOI: 10.1007/s00411-014-0565-2. PMID: 25169705.
56. Posar JA, Davis J, Brace O, Sellin P, Griffith MJ, Dhez O, et al. 2020; Characterization of a plastic dosimeter based on organic semiconductor photodiodes and scintillator. Phys Imaging Radiat Oncol. 14:48–52. DOI: 10.1016/j.phro.2020.05.007. PMID: 33458314. PMCID: PMC7807605.
57. Nyquist H. 1924; Certain factors affecting telegraph speed. Bell Syst Tech J. 3:324–346. DOI: 10.1002/j.1538-7305.1924.tb01361.x.
58. Beck A, Teboulle M. 2009; A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci. 2:183–202. DOI: 10.1137/080716542.
59. Martinet B. 1970; [Brève communication. Régularisation d'inéquations variationnelles par approximations successives]. Revue française d'informatique et de recherche opérationnelle. Série rouge. 4:154–158. French. DOI: 10.1051/m2an/197004R301541.
60. Combettes PL, Wajs VR. 2005; Signal recovery by proximal forward-backward splitting. Multiscale Model Simul. 4:1168–1200. DOI: 10.1137/050626090.
61. Siddon RL. 1985; Fast calculation of the exact radiological path for a three-dimensional CT array. Med Phys. 12:252–255. DOI: 10.1118/1.595715. PMID: 4000088.
62. Heil CE, Walnut DF. 1989; Continuous and discrete wavelet transforms. SIAM Rev. 31:628–666. DOI: 10.1137/1031129.
63. Kingma DP, Ba J. 2017; Adam: a method for stochastic optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980.
64. Cheon W, Jung H, Lee M, Lee J, Kim SJ, Cho S, et al. 2021; Development of a time-resolved mirrorless scintillation detector. PLoS One. 16:e0246742. DOI: 10.1371/journal.pone.0246742. PMID: 33577602. PMCID: PMC7880495.
65. Levitan E, Herman GT. 1987; A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography. IEEE Trans Med Imaging. 6:185–192. DOI: 10.1109/TMI.1987.4307826. PMID: 18244020.
66. Biguri A, Dosanjh M, Hancock S, Soleimani M. 2016; TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction. Biomed Phys Eng Express. 2:055010. DOI: 10.1088/2057-1976/2/5/055010.
67. Low DA, Harms WB, Mutic S, Purdy JA. 1998; A technique for the quantitative evaluation of dose distributions. Med Phys. 25:656–661. DOI: 10.1118/1.598248. PMID: 9608475.
68. Depuydt T, Van Esch A, Huyskens DP. 2002; A quantitative evaluation of IMRT dose distributions: refinement and clinical assessment of the gamma evaluation. Radiother Oncol. 62:309–319. DOI: 10.1016/S0167-8140(01)00497-2. PMID: 12175562.
69. Losasso T. 2008; IMRT delivery performance with a varian multileaf collimator. Int J Radiat Oncol Biol Phys. 71:S85–S88. DOI: 10.1016/j.ijrobp.2007.06.082. PMID: 18406945.
70. Li JG, Dempsey JF, Ding L, Liu C, Palta JR. 2003; Validation of dynamic MLC-controller log files using a two-dimensional diode array. Med Phys. 30:799–805. DOI: 10.1118/1.1567951. PMID: 12772987.
71. Zygmanski P, Kung JH, Jiang SB, Chin L. 2003; Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number. Med Phys. 30:2736–2749. DOI: 10.1118/1.1598674. PMID: 14596312.
72. Zeidan OA, Li JG, Ranade M, Stell AM, Dempsey JF. 2004; Verification of step-and-shoot IMRT delivery using a fast video-based electronic portal imaging device. Med Phys. 31:463–476. DOI: 10.1118/1.1644518. PMID: 15070242.
73. Zeng GL. 2018; Maximum-likelihood expectation-maximization algorithm versus windowed filtered backprojection algorithm: a case study. J Nucl Med Technol. 46:129–132. DOI: 10.2967/jnmt.117.196311. PMID: 29438005.
74. Hughes J. 2015. Automated analysis of Varian log files for advanced radiotherapy treatment verification: a multicenter study [dissertation]. University of Western Australia;Crawley:
75. Manikandan A, Sarkar B, Holla R, Vivek TR, Sujatha N. 2012; Quality assurance of dynamic parameters in volumetric modulated arc therapy. Br J Radiol. 85:1002–1010. DOI: 10.1259/bjr/19152959. PMID: 22745206. PMCID: PMC3474081.
76. Rangaraj D, Zhu M, Yang D, Palaniswaamy G, Yaddanapudi S, Wooten OH, et al. 2013; Catching errors with patient-specific pretreatment machine log file analysis. Pract Radiat Oncol. 3:80–90. DOI: 10.1016/j.prro.2012.05.002. PMID: 24674309.
77. Agnew A, Agnew CE, Grattan MW, Hounsell AR, McGarry CK. 2014; Monitoring daily MLC positional errors using trajectory log files and EPID measurements for IMRT and VMAT deliveries. Phys Med Biol. 59:N49–N63. DOI: 10.1088/0031-9155/59/9/N49. PMID: 24732210.
78. Calvo-Ortega JF, Teke T, Moragues S, Pozo M, Casals-Farran J. 2014; A Varian DynaLog file-based procedure for patient dose-volume histogram-based IMRT QA. J Appl Clin Med Phys. 15:4665. DOI: 10.1120/jacmp.v15i2.4665. PMID: 24710455. PMCID: PMC5875466.
79. Bedford JL, Warrington AP. 2009; Commissioning of volumetric modulated arc therapy (VMAT). Int J Radiat Oncol Biol Phys. 73:537–545. DOI: 10.1016/j.ijrobp.2008.08.055. PMID: 19147018.
Full Text Links
  • PMP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr