J Korean Assoc Oral Maxillofac Surg.  2024 Feb;50(1):13-26. 10.5125/jkaoms.2024.50.1.13.

Layered structure of sialoliths compared with tonsilloliths and antroliths

Affiliations
  • 1Department of Oral and Maxillofacial Surgery, Seoul National University, Seoul, Korea
  • 2Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
  • 3Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea

Abstract


Objectives
The aim of this study was to perform a comparative analysis of the ultrastructural and chemical composition of sialoliths, tonsilloliths, and antroliths and to describe their growth pattern.
Materials and Methods
We obtained 19 specimens from 18 patients and classified the specimens into three groups: sialolith (A), tonsillolith (B), and antrolith (C). The peripheral, middle, and core regions of the specimens were examined in detail by histology, micro-computed tomography (micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, and transmission electron microscopy (TEM).
Results
In the micro-CT, group A showed alternating radiodense and radiolucent layers, while group B had a homogeneous structure. Group C specimens revealed a compact homogeneous structure. Histopathologically, group A showed a laminated, teardrop-shaped, globular structure. Group B demonstrated degrees of immature calcification of organic and inorganic materials. In group C, the lesion was not encapsulated and showed a homogeneous lamellar bone structure. SEM revealed that group A showed distinct three layers: a peripheral multilayer zone, intermediate compact zone, and the central nidus area; groups B and C did not show these layers. The main elemental components of sialoliths were O, C, Ca, N, Cu, P, Zn, Si, Zr, F, Na, and Mg. In group B, a small amount of Fe was found in the peripheral region. Group C had a shorter component list: Ca, C, O, P, F, N, Si, Na, and Mg. TEM analysis of group A showed globular structures undergoing intra-vesicular calcification. In group B, bacteria were present in the middle layer. In the outer layer of the group C antrolith, an osteoblastic rimming was observed.
Conclusion
Sialoliths had distinct three layers: a peripheral multilayer zone, an intermediate compact zone and the central nidus area, while the tonsillolith and antrolith specimens lacked distinct layers and a core.

Keyword

Salivary glands; Maxillary sinus; Tonsil; Scanning electron microscope; Transmission electron microscope

Figure

  • Fig. 1 Representative clinical, two-dimensional micro-computed tomography cross section and three-dimensional reconstructed images of specimen A2, A3, A5, A6, A7, A9, A10, A11, A12-1, A12-2, A14, A15, B1, C1 and C2. Sialoliths show an onion-like concentric lamellar structure. Brighter regions represent higher mineralization and dark regions represent organic substance. Scale bars=2 mm.

  • Fig. 2 Representative histological findings of specimen A1, B1, and C1. A. Sialolith A1 with a single organic core in which the core was lost during the histological slide preparation (H&E staining, 4×). Scale bar=500 μm. B. Globular lipid particles found near the core of the sialolith (black arrowheads), (H&E staining, 20×). Scale bar=50 μm. C. Mineralized nodules were found in the outer layers of the core showing irregular mineralization (black arrow) (H&E staining, 20×). Scale bar=50 μm. D. Tonsillolith specimen (B1) (H&E staining, 4×). Scale bar=500 μm. E. The overall specimen exhibits a crystalline structure of organic material at a mature stage of its development (H&E staining, 20×). Scale bar=50 μm. F. A duct-like structure was observed at the center of squamous epithelium indicating the minor salivary gland duct (yellow arrowheads) (H&E staining, 20×). Scale bar=50 μm. G. Antrolith specimen (C1) (H&E staining, 4×). Scale bar=500 μm. H. The lesion was not encapsulated and showed a homogeneous lamellar bone with fibrous marrow cavities (H&E staining, 4×). Scale bar=50 μm. I. The woven bone was replaced by lamellar bone with Haversian canals at the periphery (H&E staining, 4×). Scale bar=50 μm.

  • Fig. 3 Representative combined scanning electron microscopy images of A4 sialolith, B1 tonsillolith, and C1 antrolith specimen with 14, 10, and 14 points of interest, respectively. 500× magnification.

  • Fig. 4 Representative mapping of elemental distribution and a spectrum of the representative points with energy dispersive X-ray spectroscopy (EDS) results in tonsillolith (B1). Scanning electron microscopy (SEM) image, 10,000× magnification. EDS analysis was carried out at five representative points of interest on the peripheral, middle, and core layers.

  • Fig. 5 Representative transmission electron microscopy (TEM) images of A4 sialolith (A-D), B1 tonsillolith (E-H), and C2 antrolth (I-L). Layered appearance of the sialolith showing the globular mineralized structure in internal lamella, (blue arrowheads), while the crystalline needle-like pattern was heterogeneous (yellow arrowheads), magnification 2,000×, 10,000× (A, B). Needle-like filamentary crystals, magnification 2,000×, 20,000× (C, D). Representative TEM images of B1 tonsillolith. The B1 tonsillolith had stratified squamous epithelium in its peripheral area, magnification 2,000×, 10,000× (E, F). Needle-like crystals in the core region and extra-vesicular deposition of inorganic material were also observed, magnification 10,000× (G, H). Representative TEM images of C2 antrolith. Outer layer showing osteoblastic rimming, magnification 2,000×, 10,000× (I, J). Dense, mature, predominantly lamellar bone in the middle area of the specimen, magnification 2,000×, 10,000× (K, L).


Reference

References

1. Kodaka T, Debari K, Sano T, Yamada M. 1994; Scanning electron microscopy and energy-dispersive X-ray microanalysis studies of several human calculi containing calcium phosphate crystals. Scanning Microsc. 8:241–56. discussion 256–7.
2. Schapher M, Koch M, Weidner D, Scholz M, Wirtz S, Mahajan A, et al. 2020; Neutrophil extracellular traps promote the development and growth of human salivary stones. Cells. 9:2139. https://doi.org/10.3390/cells9092139. DOI: 10.3390/cells9092139. PMID: 32971767. PMCID: PMC7564068.
Article
3. Rakesh N, Bhoomareddy Kantharaj YD, Agarwal M, Agarwal K. 2014; Ultrastructural and elemental analysis of sialoliths and their comparison with nephroliths. J Investig Clin Dent. 5:32–7. https://doi.org/10.1111/j.2041-1626.2012.00157.x. DOI: 10.1111/j.2041-1626.2012.00157.x. PMID: 24510405.
Article
4. Nolasco P, Anjos AJ, Aquino Marques JM, Cabrita F, Pereira MFC, et al. Alves de Matos AP. 2013; Structural typologies of salivary calculi. Microsc Microanal. 19(Suppl 4):29–30. https://doi.org/10.1017/S1431927613000767. DOI: 10.1017/S1431927613000767.
Article
5. Faklaris I, Bouropoulos N, Vainos NA. 2013; Composition and morphological characteristics of sialoliths. Cryst Res Technol. 48:632–40. https://doi.org/10.1002/crat.201300201. DOI: 10.1002/crat.201300201.
Article
6. Anjos AJ, Nolasco P, Aquino Marques JM, Cabrita F, Pereira MFC, et al. Alves de Matos AP. 2013; On oral calcifications: sialoliths, dental calculi and tonsilloliths. Microsc Microanal. 19(Suppl 4):23–4. https://doi.org/10.1017/S1431927613000731. DOI: 10.1017/S1431927613000731.
Article
7. Nagra I, Jones C, Dyer J. 2010; Endoluminal intervention in the salivary duct: clinical outcomes at a district general hospital. Cardiovasc Intervent Radiol. 33:307–14. https://doi.org/10.1007/s00270-009-9731-3. DOI: 10.1007/s00270-009-9731-3. PMID: 19937028.
Article
8. Kraaij S, de Visscher JGAM, Apperloo RC, Nazmi K, Bikker FJ, Brand HS. 2023; Lactoferrin and the development of salivary stones: a pilot study. Biometals. 36:657–65. https://doi.org/10.1007/s10534-022-00465-7. DOI: 10.1007/s10534-022-00465-7. PMID: 36396778. PMCID: PMC10181970.
Article
9. Avishai G, Ben-Zvi Y, Chaushu G, Rosenfeld E, Gillman L, Reiser V, et al. 2021; The unique characteristics of sialolithiasis following drug-induced hyposalivation. Clin Oral Investig. 25:4369–76. https://doi.org/10.1007/s00784-020-03750-2. DOI: 10.1007/s00784-020-03750-2. PMID: 33389134.
Article
10. Harrison JD. 2009; Causes, natural history, and incidence of salivary stones and obstructions. Otolaryngol Clin North Am. 42:927–47. Table of Contents. https://doi.org/10.1016/j.otc.2009.08.012. DOI: 10.1016/j.otc.2009.08.012. PMID: 19962002.
Article
11. Kraaij S, Karagozoglu KH, Forouzanfar T, Veerman EC, Brand HS. 2014; Salivary stones: symptoms, aetiology, biochemical composition and treatment. Br Dent J. 217:E23. https://doi.org/10.1038/sj.bdj.2014.1054. DOI: 10.1038/sj.bdj.2014.1054. PMID: 25476659.
Article
12. Su YX, Zhang K, Ke ZF, Zheng GS, Chu M, Liao GQ. 2010; Increased calcium and decreased magnesium and citrate concentrations of submandibular/sublingual saliva in sialolithiasis. Arch Oral Biol. 55:15–20. https://doi.org/10.1016/j.archoralbio.2009.11.006. DOI: 10.1016/j.archoralbio.2009.11.006. PMID: 19962126.
Article
13. Krespi YP, Kizhner V. 2013; Laser tonsil cryptolysis: in-office 500 cases review. Am J Otolaryngol. 34:420–4. https://doi.org/10.1016/j.amjoto.2013.03.006. DOI: 10.1016/j.amjoto.2013.03.006. PMID: 23583078.
Article
14. Stoodley P, Debeer D, Longwell M, Nistico L, Hall-Stoodley L, Wenig B, et al. 2009; Tonsillolith: not just a stone but a living biofilm. Otolaryngol Head Neck Surg. 141:316–21. https://doi.org/10.1016/j.otohns.2009.05.019. DOI: 10.1016/j.otohns.2009.05.019. PMID: 19716006.
Article
15. Chen HH, Yi CA, Chen YC, Tsai CC, Lin PY, Huang HH. 2021; Influence of maxillary antrolith on the clinical outcome of implants placed simultaneously with osteotome sinus floor elevation: a retrospective radiographic study. Clin Implant Dent Relat Res. 23:833–41. https://doi.org/10.1111/cid.13043. DOI: 10.1111/cid.13043. PMID: 34405532.
Article
16. Henriques JC, Kreich EM, Rosa RR, Castilho JC, de Moraes LC, de Moraes ME. 2012; Noninvasive aspergillosis as a maxillary antrolith: report of a rare case. Quintessence Int. 43:143–6.
17. Sodnom-Ish B, Eo MY, Cho YJ, Seo MH, Yang HC, Kim MK, et al. 2023; Identification of biological components for sialolith formation organized in circular multi-layers. Sci Rep. 13:12277. https://doi.org/10.1038/s41598-023-37462-w. DOI: 10.1038/s41598-023-37462-w. PMID: 37507401. PMCID: PMC10382579.
Article
18. Mustakim KR, Nguyen TTH, Eo MY, Kim SM. 2022; Histopathology and ultrastructural findings of pediatric sialolithiasis: a brief communication. J Korean Assoc Oral Maxillofac Surg. 48:125–9. https://doi.org/10.5125/jkaoms.2022.48.2.125. DOI: 10.5125/jkaoms.2022.48.2.125. PMID: 35491145. PMCID: PMC9065641.
Article
19. Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. 2016; Kidney stones. Nat Rev Dis Primers. 2:16008. https://doi.org/10.1038/nrdp.2016.8. DOI: 10.1038/nrdp.2016.8. PMID: 27188687. PMCID: PMC5685519.
Article
20. Matsuura K, Maehara N, Hirota A, Eguchi A, Yasuda K, Taniguchi K, et al. 2022; Two independent modes of kidney stone suppression achieved by AIM/CD5L and KIM-1. Commun Biol. 5:783. https://doi.org/10.1038/s42003-022-03750-w. DOI: 10.1038/s42003-022-03750-w. PMID: 35922481. PMCID: PMC9349198.
Article
21. Sivaguru M, Saw JJ, Williams JC Jr, Lieske JC, Krambeck AE, Romero MF, et al. 2018; Geobiology reveals how human kidney stones dissolve in vivo. Sci Rep. 8:13731. https://doi.org/10.1038/s41598-018-31890-9. DOI: 10.1038/s41598-018-31890-9. PMID: 30213974. PMCID: PMC6137216.
Article
22. Miller AW, Penniston KL, Fitzpatrick K, Agudelo J, Tasian G, Lange D. 2022; Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nat Rev Urol. 19:695–707. https://doi.org/10.1038/s41585-022-00647-5. DOI: 10.1038/s41585-022-00647-5. PMID: 36127409.
Article
23. Zarse CA, McAteer JA, Sommer AJ, Kim SC, Hatt EK, Lingeman JE, et al. 2004; Nondestructive analysis of urinary calculi using micro computed tomography. BMC Urol. 4:15. https://doi.org/10.1186/1471-2490-4-15. DOI: 10.1186/1471-2490-4-15. PMID: 15596006. PMCID: PMC544194.
Article
24. Williams JC Jr, McAteer JA, Evan AP, Lingeman JE. 2010; Micro-computed tomography for analysis of urinary calculi. Urol Res. 38:477–84. https://doi.org/10.1007/s00240-010-0326-x. DOI: 10.1007/s00240-010-0326-x. PMID: 20967434.
Article
25. Leng S, Huang A, Cardona JM, Duan X, Williams JC, McCollough CH. 2016; Dual-energy CT for quantification of urinary stone composition in mixed stones: a phantom study. AJR Am J Roentgenol. 207:321–9. https://doi.org/10.2214/ajr.15.15692. DOI: 10.2214/AJR.15.15692. PMID: 27224260. PMCID: PMC5010238.
Article
26. Larsen T, Fiehn NE. 2017; Dental biofilm infections - an update. APMIS. 125:376–84. https://doi.org/10.1111/apm.12688. DOI: 10.1111/apm.12688. PMID: 28407420.
Article
27. Penescu M, Purcarea VL, Sisu I, Sisu E. 2010; Mass spectrometry and renal calculi. J Med Life. 3:128–36.
28. Xie B, Halter TJ, Borah BM, Nancollas GH. 2015; Aggregation of calcium phosphate and oxalate phases in the formation of renal stones. Cryst Growth Des. 15:204–11. https://doi.org/10.1021/cg501209h. DOI: 10.1021/cg501209h. PMID: 25598742. PMCID: PMC4291782.
Article
29. Takeda Y. 1986; Crystalloids with calcareous deposition in the parotid gland: one of the possible causes of development of salivary calculi. J Oral Pathol. 15:459–61. https://doi.org/10.1111/j.1600-0714.1986.tb00658.x. DOI: 10.1111/j.1600-0714.1986.tb00658.x. PMID: 3100747.
Article
30. Nolasco P, Anjos AJ, Marques JM, Cabrita F, da Costa EC, Maurício A, et al. 2013; Structure and growth of sialoliths: computed microtomography and electron microscopy investigation of 30 specimens. Microsc Microanal. 19:1190–203. https://doi.org/10.1017/s1431927613001694. DOI: 10.1017/S1431927613001694. PMID: 24001782.
Article
31. Kasaboğlu O, Er N, Tümer C, Akkocaoğlu M. 2004; Micromorphology of sialoliths in submandibular salivary gland: a scanning electron microscope and X-ray diffraction analysis. J Oral Maxillofac Surg. 62:1253–8. https://doi.org/10.1016/j.joms.2003.11.018. DOI: 10.1016/j.joms.2003.11.018. PMID: 15452813.
Article
32. Liesegang RE. 1896; Uber einige eigenschaften von gallerten. Naturwissensch Wochenschr. 11:353–62. German.
33. Ostwald W. 1925; Zur theorie der Liesegangʼschen Ringe. Kolloid Z. 36:380–90. German. https://doi.org/10.1007/BF01451976. DOI: 10.1007/BF01451976.
Article
34. Jayasree RS, Gupta AK, Vivek V, Nayar VU. 2008; Spectroscopic and thermal analysis of a submandibular sialolith of Whartonʼs duct resected using Nd:YAG laser. Lasers Med Sci. 23:125–31. https://doi.org/10.1007/s10103-007-0458-6. DOI: 10.1007/s10103-007-0458-6. PMID: 17483982.
Article
35. Giray CB, Dogan M, Akalin A, Baltrusaitis J, Chan DC, Skinner HC, et al. 2007; Sialolith characterization by scanning electron microscopy and X-ray photoelectron spectroscopy. Scanning. 29:206–10. https://doi.org/10.1002/sca.20069. DOI: 10.1002/sca.20069. PMID: 17918217.
Article
36. Mimura M, Tanaka N, Ichinose S, Kimijima Y, Amagasa T. 2005; Possible etiology of calculi formation in salivary glands: biophysical analysis of calculus. Med Mol Morphol. 38:189–95. https://doi.org/10.1007/s00795-005-0290-7. DOI: 10.1007/s00795-005-0290-7. PMID: 16170467.
Article
37. Favus MJ, Feingold KR. Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, editors. 2018. Kidney stone emergencies. Endotext. MDText.com, Inc..
38. Pachisia S, Mandal G, Sahu S, Ghosh S. 2019; Submandibular sialolithiasis: a series of three case reports with review of literature. Clin Pract. 9:1119. https://doi.org/10.4081/cp.2019.1119. DOI: 10.4081/cp.2019.1119. PMID: 30996853. PMCID: PMC6444375.
Article
Full Text Links
  • JKAOMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr