Healthc Inform Res.  2024 Jan;30(1):3-15. 10.4258/hir.2024.30.1.3.

Survey of Medical Applications of Federated Learning

Affiliations
  • 1Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
  • 2Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Abstract


Objectives
Medical artificial intelligence (AI) has recently attracted considerable attention. However, training medical AI models is challenging due to privacy-protection regulations. Among the proposed solutions, federated learning (FL) stands out. FL involves transmitting only model parameters without sharing the original data, making it particularly suitable for the medical field, where data privacy is paramount. This study reviews the application of FL in the medical domain.
Methods
We conducted a literature search using the keywords "federated learning" in combination with "medical," "healthcare," or "clinical" on Google Scholar and PubMed. After reviewing titles and abstracts, 58 papers were selected for analysis. These FL studies were categorized based on the types of data used, the target disease, the use of open datasets, the local model of FL, and the neural network model. We also examined issues related to heterogeneity and security.
Results
In the investigated FL studies, the most commonly used data type was image data, and the most studied target diseases were cancer and COVID-19. The majority of studies utilized open datasets. Furthermore, 72% of the FL articles addressed heterogeneity issues, while 50% discussed security concerns.
Conclusions
FL in the medical domain appears to be in its early stages, with most research using open data and focusing on specific data types and diseases for performance verification purposes. Nonetheless, medical FL research is anticipated to be increasingly applied and to become a vital component of multi-institutional research.

Keyword

Machine Learning, Deep Learning, Distributed Systems, Privacy, Data Security

Reference

References

1. Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017; 19:221–48. https://doi.org/10.1146/annurev-bioeng-071516-044442.
Article
2. Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017; 42:60–88. https://doi.org/10.1016/j.media.2017.07.005.
Article
3. European Union. General Data Protection Regulation [Internet]. Brussels, Belgium: European Union;c2023. [cited at 2024 Jan 31]. Available from: https://gdpr-info.eu/.
4. US Centers for Disease Control and Prevention. Health Insurance Portability and Accountability Act of 1996 (HIPAA) [Internet]. Atlanta (GA): Centers for Disease Control and Prevention;c2022. [cited at 2024 Jan 30]. Available from: https://www.cdc.gov/phlp/publications/topic/hipaa.html.
5. Korea Law Translation Center. Personal Information Protection Act (Act no 16930 2020) [Internet]. Sejong, Korea: Korea Law Translation Center;c2021. [cited at 2024 Jan 30]. Available from: https://elaw.klri.re.kr/kor_service/lawView.do?hseq=53044&lang=ENG.
6. Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, et al. Deep learning with differential privacy. In : Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security; 2016 Oct 24–28; Vienna, Austria. p. 308–18. https://doi.org/10.1145/2976749.2978318.
Article
7. Dwork C. Differential privacy: a survey of results. Agrawal M, Du D, Duan Z, Li A, editors. Theory and applications of models of computation. Heidelberg, Germany: Springer;2008. p. 1–19. https://doi.org/10.1007/978-3-540-79228-4_1.
Article
8. Goncalves A, Ray P, Soper B, Stevens J, Coyle L, Sales AP. Generation and evaluation of synthetic patient data. BMC Med Res Methodol. 2020; 20(1):108. https://doi.org/10.1186/s12874-020-00977-1.
Article
9. Chen RJ, Lu MY, Chen TY, Williamson DF, Mahmood F. Synthetic data in machine learning for medicine and healthcare. Nat Biomed Eng. 2021; 5(6):493–7. https://doi.org/10.1038/s41551-021-00751-8.
Article
10. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing. 2018; 321:321–31. https://doi.org/10.1016/j.neucom.2018.09.013.
Article
11. Naehrig M, Lauter K, Vaikuntanathan V. Can homomorphic encryption be practical? In : Proceedings of the 3rd ACM Workshop on Cloud Computing Security; 2011 Oct 21; Chicago, IL, USA. p. 113–24. https://doi.org/10.1145/2046660.2046682.
Article
12. Acar A, Aksu H, Uluagac AS, Conti M. A survey on homomorphic encryption schemes: Theory and implementation. ACM Computing Surveys. 2018; 51(4):79. https://doi.org/10.1145/3214303.
Article
13. Fontaine C, Galand F. A survey of homomorphic encryption for nonspecialists. EURASIP J Inf Secur. 2007; 2007:13801. https://doi.org/10.1155/2007/13801.
Article
14. McMahan HB, Moore E, Ramage D, Hampson S, Arcas BA. Communication-efficient learning of deep networks from decentralized data [Internet]. Ithaca (NY): arXiv.org;2023. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.1602.05629.
Article
15. Yoo JH, Jeong H, Lee J, Chung TM. Federated learning: issues in medical application [Internet]. Ithaca (NY): arXiv.org;2021. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2109.00202.
Article
16. Pfitzner B, Steckhan N, Arnrich B. Federated learning in a medical context: a systematic literature review. ACM Trans Internet Technol. 2021; 21(2):50. https://doi.org/10.1145/3412357.
Article
17. Antunes RS, Andre da Costa C, Kuderle A, Yari IA, Eskofier B. Federated learning for healthcare: systematic review and architecture proposal. ACM Trans Intell Syst Technol. 2022; 13(4):54. https://doi.org/10.1145/3501813.
Article
18. Crowson MG, Moukheiber D, Arevalo AR, Lam BD, Mantena S, Rana A, et al. A systematic review of federated learning applications for biomedical data. PLOS Digit Health. 2022; 1(5):e0000033. https://doi.org/10.1371/journal.pdig.0000033.
Article
19. Nguyen DC, Pham QV, Pathirana PN, Ding M, Seneviratne A, Lin Z, et al. Federated learning for smart healthcare: a survey. ACM Comput Surv. 2022; 55(3):60. https://doi.org/10.1145/3501296.
Article
20. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, et al. Advances and open problems in federated learning [Internet]. Ithaca (NY): arXiv.org;2019. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.1912.04977.
Article
21. Li W, Milletari F, Xu D, Rieke N, Hancox J, Zhu W, et al. Privacy-preserving federated brain tumour segmentation [Internet]. Ithaca (NY): arXiv.org;2019. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.1910.00962.
Article
22. Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020; 10(1):12598. https://doi.org/10.1038/s41598-020-69250-1.
Article
23. Sarma KV, Harmon S, Sanford T, Roth HR, Xu Z, Tetreault J, et al. Federated learning improves site performance in multicenter deep learning without data sharing. J Am Med Inform Assoc. 2021; 28(6):1259–64. https://doi.org/10.1093/jamia/ocaa341.
Article
24. Jimenez-Sanchez A, Tardy M, Gonzalez Ballester MA, Mateus D, Piella G. Memory-aware curriculum federated learning for breast cancer classification. Comput Methods Programs Biomed. 2023; 229:107318. https://doi.org/10.1016/j.cmpb.2022.107318.
Article
25. Shen C, Wang P, Roth HR, Yang D, Xu D, Oda M, et al. Multi-task federated learning for heterogeneous pancreas segmentation [Internet]. Ithaca (NY): arXiv.org;2021. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2108.08537.
Article
26. Misonne T, Jodogne S. Federated learning for heart segmentation. In : Proceedings of 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP); 2022 Jun 26–29; Nafplio, Greece. p. 1–5. https://doi.org/10.1109/IVMSP54334.2022.9816345.
Article
27. Pati S, Baid U, Edwards B, Sheller M, Wang SH, Reina GA, et al. Federated learning enables big data for rare cancer boundary detection. Nat Commun. 2022; 13(1):7346. https://doi.org/10.1038/s41467-022-33407-5.
Article
28. Adnan M, Kalra S, Cresswell JC, Taylor GW, Tizhoosh HR. Federated learning and differential privacy for medical image analysis. Sci Rep. 2022; 12(1):1953. https://doi.org/10.1038/s41598-022-05539-7.
Article
29. Andreux M, Terrail JO, Beguier C, Tramel EW. Siloed federated learning for multi-centric histopathology datasets [Internet]. Ithaca (NY): arXiv.org;2020. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2008.07424.
Article
30. Lu MY, Chen RJ, Kong D, Lipkova J, Singh R, Williamson DF, et al. Federated learning for computational pathology on gigapixel whole slide images. Med Image Anal. 2022; 76:102298. https://doi.org/10.1016/j.media.2021.102298.
Article
31. Bercea CI, Wiestler B, Rueckert D, Albarqouni S. Feddis: disentangled federated learning for unsupervised brain pathology segmentation [Internet]. Ithaca (NY): arXiv.org;2021. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2103.03705.
Article
32. Ke J, Shen Y, Lu Y. Style normalization in histology with federated learning. In : Proceedings of 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI); 2021 Apr 13–16; Nice, France. p. 953–6. https://doi.org/10.1109/ISBI48211.2021.9434078.
Article
33. Baid U, Pati S, Kurc TM, Gupta R, Bremer E, Abousamra S, et al. Federated learning for the classification of tumor infiltrating lymphocytes [Internet]. Ithaca (NY): arXiv.org;2022. [cited at 2024 Jan 30]. https://doi.org/10.48550/arXiv.2203.16622.
Article
34. Lee H, Chai YJ, Joo H, Lee K, Hwang JY, Kim SM, et al. Federated learning for thyroid ultrasound image analysis to protect personal information: validation study in a real health care environment. JMIR Med Inform. 2021; 9(5):e25869. https://doi.org/10.2196/25869.
Article
35. Dayan I, Roth HR, Zhong A, Harouni A, Gentili A, Abidin AZ, et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med. 2021; 27(10):1735–43. https://doi.org/10.1038/s41591-021-01506-3.
Article
36. Xu Y, Ma L, Yang F, Chen Y, Ma K, Yang J, et al. A collaborative online AI engine for CT-based COVID-19 diagnosis [Internet]. Ithaca (NY): arXiv.org;2020. [cited at 2024 Jan 30]. Available from: https://doi.org/10.1101/2020.05.10.20096073.
Article
37. Liu B, Yan B, Zhou Y, Yang Y, Zhang Y. Experiments of federated learning for COVID-19 chest X-ray images [Internet]. Ithaca (NY): arXiv.org;2020. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2007.05592.
Article
38. Zhang W, Zhou T, Lu Q, Wang X, Zhu C, Sun H, et al. Dynamic-fusion-based federated learning for COVID-19 detection. IEEE Internet Things J. 2021; 8(21):15884–91. https://doi.org/10.1109/JIOT.2021.305618.
Article
39. Feki I, Ammar S, Kessentini Y, Muhammad K. Federated learning for COVID-19 screening from chest X-ray images. Appl Soft Comput. 2021; 106:107330. https://doi.org/10.1016/j.asoc.2021.107330.
Article
40. Yang Q, Zhang J, Hao W, Spell GP, Carin L. FLOP: federated learning on medical datasets using partial networks. In : Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining; 2021 Aug 14–18; Virtual Event, Singapore. p. 3845–53. https://doi.org/10.1145/3447548.3467185.
Article
41. Cetinkaya AE, Akin M, Sagiroglu S. A communication efficient federated learning approach to multi chest diseases classification. In : Proceedings of 2021 6th International Conference on Computer Science and Engineering (UBMK); 2021 Sep 15–17; Ankara, Türkiye. p. 429–34. https://doi.org/10.1109/UBMK52708.2021.9558913.
Article
42. Dou Q, So TY, Jiang M, Liu Q, Vardhanabhuti V, Kaissis G, et al. Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study. NPJ Digit Med. 2021; 4(1):60. https://doi.org/10.1038/s41746-021-00431-6.
Article
43. Qayyum A, Ahmad K, Ahsan MA, Al-Fuqaha A, Qadir J. Collaborative federated learning for healthcare: multi-modal COVID-19 diagnosis at the edge. IEEE Open J Comput Soc. 2022; 3:172–84. https://doi.org/10.1109/OJCS.2022.3206407.
Article
44. Guo P, Wang P, Zhou J, Jiang S, Patel VM. Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2021; 2021:2423–32. https://doi.org/10.1109/cvpr46437.2021.00245.
Article
45. Feng CM, Yan Y, Wang S, Xu Y, Shao L, Fu H. Specificity-preserving federated learning for MR image reconstruction. IEEE Trans Med Imaging. 2023; 42(7):2010–21. https://doi.org/10.1109/TMI.2022.3202106.
Article
46. Yang Z, Xia W, Lu Z, Chen Y, Li X, Zhang Y. Hyper-network-based physics-driven personalized federated learning for CT imaging. In : IEEE Trans Neural Netw Learn Syst; 2023 Dec 15; [Epub]. https://doi.org/10.1109/TNNLS.2023.3338867.
Article
47. Roth HR, Chang K, Singh P, Neumark N, Li W, Gupta V, et al. Federated learning for breast density classification: a real-world implementation [Internet]. Ithaca (NY): arXiv.org;2020. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2009.01871.
Article
48. Malekzadeh M, Hasircioglu B, Mital N, Katarya K, Ozfatura ME, Gunduz D. Dopamine: differentially private federated learning on medical data [Internet]. Ithaca (NY): arXiv.org;2021. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2101.11693.
Article
49. Li X, Gu Y, Dvornek N, Staib LH, Ventola P, Duncan JS. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results. Med Image Anal. 2020; 65:101765. https://doi.org/10.1016/j.media.2020.101765.
Article
50. Stripelis D, Ambite JL, Lam P, Thompson P. neuroscience research using federated learning. In : Proceedings of 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI); 2021 Apr 13–16; Nice, France. p. 1191–5. https://doi.org/10.1109/ISBI48211.2021.9433925.
Article
51. Liu D, Cabezas M, Wang D, Tang Z, Bai L, Zhan G, et al. Multiple sclerosis lesion segmentation: revisiting weighting mechanisms for federated learning. Front Neurosci. 2023; 17:1167612. https://doi.org/10.3389/fnins.2023.1167612.
Article
52. Linardos A, Kushibar K, Walsh S, Gkontra P, Lekadir K. Federated learning for multi-center imaging diagnostics: a simulation study in cardiovascular disease. Sci Rep. 2022; 12(1):3551. https://doi.org/10.1038/s41598-022-07186-4.
Article
53. Elayan H, Aloqaily M, Guizani M. Sustainability of healthcare data analysis IoT-based systems using deep federated learning. IEEE Internet Things J. 2021; 9(10):7338–46. https://doi.org/10.1109/JIOT.2021.3103635.
Article
54. Elayan H, Aloqaily M, Guizani M. Deep federated learning for IoT-based decentralized healthcare systems. In : Proceedings of 2021 International Wireless Communications and Mobile Computing (IWCMC); 2021 Jun 28–Jul 2; Harbin, China. p. 105–9. https://doi.org/10.1109/IWCMC51323.2021.9498820.
Article
55. Kassem H, Alapatt D, Mascagni P, Karargyris A, Padoy N. Federated cycling (FedCy): semi-supervised federated learning of surgical phases. IEEE Trans Med Imaging. 2023; 42(7):1920–31. https://doi.org/10.1109/TMI.2022.3222126.
Article
56. Agbley BL, Li J, Haq AU, Bankas EK, Ahmad S, Agyemang IO, et al. Multimodal melanoma detection with federated learning. In : Proceedings of 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP); 2021 Dec 17–19; Chengdu, China. p. 238–44. https://doi.org/10.1109/ICCWAMTIP53232.2021.9674116.
Article
57. Borger T, Mosteiro P, Kaya H, Rijcken E, Salah AA, Scheepers F, et al. Federated learning for violence incident prediction in a simulated cross-institutional psychiatric setting. Expert Syst Appl. 2022; 199:116720. https://doi.org/10.1016/j.eswa.2022.116720.
Article
58. Basu P, Roy TS, Naidu R, Muftuoglu Z, Singh S, Mireshghallah F. Benchmarking differential privacy and federated learning for BERT models [Internet]. Ithaca (NY): arXiv.org;2021. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2106.13973.
Article
59. Ge S, Wu F, Wu C, Qi T, Huang Y, Xie X. Fedner: privacy-preserving medical named entity recognition with federated learning [Internet]. Ithaca (NY): arXiv. org;2020. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2003.09288.
Article
60. Kanani P, Marathe VJ, Peterson D, Harpaz R, Bright S. Private cross-silo federated learning for extracting vaccine adverse event mentions [Internet]. Ithaca (NY): arXiv.org;2021. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2103.07491.
Article
61. Sui D, Chen Y, Zhao J, Jia Y, Xie Y, Sun W. FedED: federated learning via ensemble distillation for medical relation extraction. In : Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP); 2020 Nov 16–20; Virtual Event. p. 2118–28.
Article
62. Thwal CM, Thar K, Tun YL, Hong CS. Attention on personalized clinical decision support system: federated learning approach. In : Proceedings of 2021 IEEE International Conference on Big Data and Smart Computing (BigComp); 2021 Jan 17–20; Jeju, South Korea. p. 141–7. https://doi.org/10.1109/BigComp51126.2021.00035.
Article
63. Yoo JH, Son HM, Jeong H, Jang EH, Kim AY, Yu HY, et al. Personalized federated learning with clustering: non-IID heart rate variability data application [Internet]. Ithaca (NY): arXiv.org;2021. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2108.01903.
Article
64. Zhang M, Wang Y, Luo T. 2020. December. Federated learning for arrhythmia detection of non-IID ECG. In : Proceedings of 2020 IEEE 6th International Conference on Computer and Communications (ICCC); 2020 Dec 11–14; Chengdu, China. p. 1176–80. https://doi.org/10.1109/ICCC51575.2020.9344971.
Article
65. Can YS, Ersoy C. Privacy-preserving federated deep learning for wearable IoT-based biomedical monitoring. ACM Trans Internet Technol. 2021; 21(1):21. https://doi.org/10.1145/3428152.
Article
66. Chen Y, Qin X, Wang J, Yu C, Gao W. Fedhealth: a federated transfer learning framework for wearable healthcare. IEEE Intell Syst. 2020; 35(4):83–93. https://doi.org/10.1109/MIS.2020.2988604.
Article
67. Wu Q, Chen X, Zhou Z, Zhang J. Fedhome: cloud-edge based personalized federated learning for in-home health monitoring. IEEE Trans Mob Comput. 2020; 21(8):2818–32. https://doi.org/10.1109/TMC.2020.3045266.
Article
68. Arikumar KS, Prathiba SB, Alazab M, Gadekallu TR, Pandya S, Khan JM, et al. FL-PMI: federated learning-based person movement identification through wearable devices in smart healthcare systems. Sensors (Basel). 2022; 22(4):1377. https://doi.org/10.3390/s22041377.
Article
69. Rajendran S, Obeid JS, Binol H, D Agostino R Jr, Foley K, Zhang W, et al. Cloud-based federated learning implementation across medical centers. JCO Clin Cancer Inform. 2021; 5:1–11. https://doi.org/10.1200/CCI.20.00060.
Article
70. Choudhury O, Park Y, Salonidis T, Gkoulalas-Divanis A, Sylla I, Das AK. Predicting adverse drug reactions on distributed health data using federated learning. AMIA Annu Symp Proc. 2020; 2019:313–22.
71. Vaid A, Jaladanki SK, Xu J, Teng S, Kumar A, Lee S, et al. Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: machine learning approach. JMIR Med Inform. 2021; 9(1):e24207. https://doi.org/10.2196/24207.
Article
72. Jaladanki SK, Vaid A, Sawant AS, Xu J, Shah K, Dellepiane S, et al. Development of a federated learning approach to predict acute kidney injury in adult hospitalized patients with COVID-19 in New York City [Internet]. Cold Spring Harbor (NY): medRxiv.org;2021. [cited at 2024 Jan 30]. Available from: https://doi.org/10.1101/2021.07.25.21261105.
Article
73. Sadilek A, Liu L, Nguyen D, Kamruzzaman M, Serghiou S, Rader B, et al. Privacy-first health research with federated learning. NPJ Digit Med. 2021; 4(1):132. https://doi.org/10.1038/s41746-021-00489-2.
Article
74. Huang L, Shea AL, Qian H, Masurkar A, Deng H, Liu D. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J Biomed Inform. 2019; 99:103291. https://doi.org/10.1016/j.jbi.2019.103291.
Article
75. Dang TK, Lan X, Weng J, Feng M. Federated learning for electronic health records. ACM Trans Intell Syst Technol. 2022; 13(5):72. https://doi.org/10.1145/3514500.
Article
76. Mondrejevski L, Miliou I, Montanino A, Pitts D, Hollmen J, Papapetrou P. FLICU: a federated learning workflow for intensive care unit mortality prediction. In : Proceedings of 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS); 2022 Jul 21–23; Shenzen, China. p. 32–7. https://doi.org/10.1109/CBMS55023.2022.00013.
Article
77. Xu X, Peng H, Bhuiyan MZ, Hao Z, Liu L, Sun L, et al. Privacy-preserving federated depression detection from multisource mobile health data. IEEE Trans Ind Inf. 2021; 18(7):4788–97. https://doi.org/10.1109/TII.2021.3113708.
Article
78. Islam TU, Ghasemi R, Mohammed N. Privacy-preserving federated learning model for healthcare data. In : Proceedings of 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC); 2022 Jan 26–29; Las Vegas, NV, USA. p. 281–7. https://doi.org/10.1109/CCWC54503.2022.9720752.
Article
79. Kalra S, Adnan M, Taylor G, Tizhoosh H. Learning permutation invariant representations using memory networks [Internet]. Ithaca (NY): arXiv.org;2019. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.1911.07984.
Article
80. Wang R, Fu B, Fu G, Wang M. Deep & cross network for Ad click predictions [Internet]. Ithaca (NY): arXiv. org;2017. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.1708.05123.
Article
81. Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. In : Proceedings of 2017 International Conference on Engineering and Technology (ICET); 2017 Aug 21–23; Antalya, Türkiye. p. 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186.
Article
82. Yu Y, Si X, Hu C, Zhang J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019; 31(7):1235–70. https://doi.org/10.1162/neco_a_01199.
Article
83. Acheampong FA, Nunoo-Mensah H, Chen W. Transformer models for text-based emotion detection: a review of BERT-based approaches. Artif Intell Rev. 2021; 54:5789–829. https://doi.org/10.1007/s10462-021-09958-2.
Article
84. Kingma DP, Ba J. Adam: a method for stochastic optimization [Internet]. Ithaca (NY): arXiv.org;2014. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.1412.6980.
Article
85. Ruder S. An overview of gradient descent optimization algorithms [Internet]. Ithaca (NY): arXiv.org;2016. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.1609.04747.
Article
86. Wang Z, Song M, Zhang Z, Song Y, Wang Q, Qi H. Beyond inferring class representatives: user-level privacy leakage from federated learning. In : Proceedings of IEEE Conference on Computer Communications (INFOCOM); ; 2019 Apr 29–May 2; Paris, France. p. 2512–20. https://doi.org/10.1109/INFOCOM.2019.8737416.
Article
87. Luo X, Wu Y, Xiao X, Ooi BC. Feature inference attack on model predictions in vertical federated learning. In : Proceedings of 2021 IEEE 37th International Conference on Data Engineering (ICDE); 2021 Apr 19–22; Chania, Greece. p. 181–92. https://doi.org/10.1109/ICDE51399.2021.00023.
Article
88. Zhang J, Zhang J, Chen J, Yu S. GAN enhanced membership inference: a passive local attack in federated learning. In : Proceedings of 2020 IEEE International Conference on Communications (ICC); 5; 2020 Jun 7–11; Dublin, Ireland. p. 1–6. https://doi.org/10.1109/ICC40277.2020.9148790.
Article
89. Hu H, Salcic Z, Sun L, Dobbie G, Zhang X. Source inference attacks in federated learning. In : Proceedings of 2021 IEEE International Conference on Data Mining (ICDM); 2021 Dec 7–10; Auckland, New Zealand. . p. 1102–7. https://doi.org/10.1109/ICDM51629.2021.00129.
Article
90. Bhagoji AN, Chakraborty S, Mittal P, Calo S. Analyzing federated learning through an adversarial lens [Internet]. Ithaca (NY): arXiv.org;2018. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.1811.12470.
Article
91. Fang M, Cao X, Jia J, Gong N. Local model poisoning attacks to Byzantine-Robust federated learning. In : Proceedings of the 29th USENIX Security Symposium; 2020 Aug 12–14; Boston, MA, USA. p. 1605–22.
92. Tolpegin V, Truex S, Gursoy ME, Liu L. Data Poisoning Attacks Against Federated Learning Systems [Internet]. Ithaca (NY): arXiv.org;2020. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2007.08432.
Article
93. Zhang J, Chen J, Wu D, Chen B, Yu S. Poisoning attack in federated learning using generative adversarial nets. In : Proceedings of 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE); 2019 Aug 5–8; Rotorua, New Zealand. p. 374–80. https://doi.org/10.1109/TrustCom/BigDataSE.2019.00057.
Article
94. Fung C, Yoon CJ, Beschastnikh I. Mitigating sybils in federated learning poisoning [Internet]. Ithaca (NY): arXiv.org;2018. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.1808.04866.
Article
95. Liu P, Xu X, Wang W. Threats, attacks and defenses to federated learning: issues, taxonomy and perspectives. Cybersecurity. 2022; 5(1):4. https://doi.org/10.1186/s42400-021-00105-6.
Article
96. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V. Federated optimization in heterogeneous networks [Internet]. Ithaca (NY): arXiv.org;2018. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.1812.06127.
Article
97. Karimireddy SP, Kale S, Mohri M, Reddi SJ, Stich SU, Theertha Suresh A. Scaffold: stochastic controlled averaging for federated learning [Internet]. Ithaca (NY): arXiv.org;2021. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.1910.06378.
Article
98. Li Q, Diao Y, Chen Q, He B. Federated learning on non-IID data silos: an experimental study [Internet]. Ithaca (NY): arXiv.org;2021. [cited at 2024 Jan 30]. Available from: https://doi.org/10.48550/arXiv.2102.02079.
Article
99. Fang H, Qian Q. Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet. 2021; 13(4):94. https://doi.org/10.3390/fi13040094.
Article
100. Park J, Lim H. Privacy-preserving federated learning using homomorphic encryption. Appl Sci. 2022; 12(2):734. https://doi.org/10.3390/app12020734.
Article
101. Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022; 43(8):716–99. https://doi.org/10.1093/eurheartj/ehab892.
Article
102. WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health. 2019; 7(10):e1332–45. https://doi.org/10.1016/S2214-109X(19)30318-3.
103. Dumurgier J, Tzourio C. Epidemiology of neurological diseases in older adults. Rev Neurol (Paris). 2020; 176(9):642–8. https://doi.org/10.1016/j.neurol.2020.01.356.
Article
104. Gooch CL, Pracht E, Borenstein AR. The burden of neurological disease in the United States: a summary report and call to action. Ann Neurol. 2017; 81(4):479–84. https://doi.org/10.1002/ana.24897.
Article
Full Text Links
  • HIR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr