Ann Surg Treat Res.  2023 Nov;105(5):252-263. 10.4174/astr.2023.105.5.252.

Fluorescence-guided colorectal surgery: applications, clinical results, and protocols

Affiliations
  • 1Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
  • 2Division of Colon and Rectal Surgery, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
  • 3Department of Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea

Abstract

In recent years, the rise of minimally invasive surgery has driven the development of surgical devices. Indocyanine green (ICG) fluorescence imaging is receiving increased attention in colorectal surgery for improved intraoperative visualization and decision-making. ICG, approved by the U.S. Food and Drug Administration in 1959, rapidly binds to plasma proteins and is primarily intravascular. ICG absorption of near-infrared light (750–800 nm) and emission as fluorescence (830 nm) when bound to tissue proteins enhances deep tissue visualization. Applications include assessing anastomotic perfusion, identifying sentinel lymph nodes, and detecting colorectal cancer metastasis. However, standardized protocols and research on clinical outcomes remain limited. This study explores ICG’s role, advantages, disadvantages, and potential clinical impact in colorectal surgery.

Keyword

Colorectal surgery; Fluorescent dyes; Indocyanine green

Figure

  • Fig. 1 Indocyanine green-fluorescence image (ICG-FI) use for anastomotic safety. Sigmoid colon image under standard white light (A), ICG-FI with red inversion mode (B), time-fluorescence curve of ICG angiography for quantitative perfusion analysis, during laparoscopic low anterior resection for rectal cancer patients. (C) Fluorescent intensity curves have a common transitional area within 4–5 cm as an optimal zone to analyze the fluorescence images (D). Adapted from Son et al. [2] and Ahn et al. [8], according to the Creative Commons License.

  • Fig. 2 Fluorescence lymph node mapping using 3 different NIR imaging systems. (A–C) Stryker, 1588 AIM camera system; (D–F) Karl Storz, IMAGE1 S; and (G–I) Olympus, CLV-S200-IR. (A), (D), and (G) show the mesentery of the colon under white light. Adapted from Ahn et al. [41], according to the Creative Commons License.

  • Fig. 3 Optimal indocyanine green (ICG) tattooing protocol. Within a submucosal ICG injection dosage of 0.5–1.0 mg, the protocol was optimized as the highest success rate of fluorescence lymph node mapping along with tumor localization and ICG angiography during a single surgery. Adapted from Ahn et al. [41], according to the Creative Commons License.


Reference

1. Shah MF, Naeem A, Haq IU, Riaz S, Shakeel O, Panteleimonitis S, et al. Laparoscopy offers bet ter clinical outcomes and long-term survival in patients with right colon cancer: experience from national cancer center. Ann Coloproctol. 2022; 38:223–229. PMID: 34167186.
Article
2. Son GM, Kwon MS, Kim Y, Kim J, Kim SH, Lee JW. Quantitative analysis of colon perfusion pattern using indocyanine green (ICG) angiography in laparoscopic colorectal surgery. Surg Endosc. 2019; 33:1640–1649. PMID: 30203201.
Article
3. Cahill RA, Ris F, Mortensen NJ. Near-infrared laparoscopy for real-time intra-operative arterial and lymphatic perfusion imaging. Colorectal Dis. 2011; 13 Suppl 7:12–17. PMID: 22098511.
Article
4. Piozzi GN, Kim SH. Robotic intersphincteric resection for low rectal cancer: technical controversies and a systematic review on the perioperative, oncological, and functional outcomes. Ann Coloproctol. 2021; 37:351–367. PMID: 34784706.
Article
5. Ryu HS, Kim J. Current status and role of robotic approach in patients with low-lying rectal cancer. Ann Surg Treat Res. 2022; 103:1–11. PMID: 35919115.
Article
6. Cahill RA, Anderson M, Wang LM, Lindsey I, Cunningham C, Mortensen NJ. Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia. Surg Endosc. 2012; 26:197–204. PMID: 21853392.
Article
7. Son GM, Ahn HM, Lee IY, Ha GW. Multifunctional indocyanine green applications for fluorescence-guided laparoscopic colorectal surgery. Ann Coloproctol. 2021; 37:133–140. PMID: 34102813.
Article
8. Ahn HM, Son GM, Lee IY, Park SH, Kim NS, Baek KR. Optimization of indocyanine green angiography for colon perfusion during laparoscopic colorectal surgery. Colorectal Dis. 2021; 23:1848–1859. PMID: 33894016.
Article
9. Boni L, Fingerhut A, Marzorati A, Rausei S, Dionigi G, Cassinotti E. Indocyanine green fluorescence angiography during laparoscopic low anterior resection: results of a case-matched study. Surg Endosc. 2017; 31:1836–1840. PMID: 27553790.
Article
10. Kim S, Kang SI, Kim SH, Kim JH. The effect of anastomotic leakage on the incidence and severity of low anterior resection syndrome in patients undergoing proctectomy: a propensity score matching analysis. Ann Coloproctol. 2021; 37:281–290. PMID: 34098631.
Article
11. Koedam TW, Bootsma BT, Deijen CL, van de Brug T, Kazemier G, Cuesta MA, et al. Oncological outcomes after anastomotic leakage after surgery for colon or rectal cancer: increased risk of local recurrence. Ann Surg. 2022; 275:e420–e427. PMID: 32224742.
12. Chaouch MA, Kellil T, Jeddi C, Saidani A, Chebbi F, Zouari K. How to prevent anastomotic leak in colorectal surgery?: a systematic review. Ann Coloproctol. 2020; 36:213–222. PMID: 32919437.
Article
13. Mizuuchi Y, Tanabe Y, Sada M, Tamura K, Nagayoshi K, Nagai S, et al. Cross-sectional area of psoas muscle as a predictive marker of anastomotic failure in male rectal cancer patients: Japanese single institutional retrospective observational study. Ann Coloproctol. 2022; 38:353–361. PMID: 35410111.
Article
14. Oh BY, Park YA, Huh JW, Cho YB, Yun SH, Kim HC, et al. Neoadjuvant chemoradiotherapy determines the prognostic impact of anastomotic leakage in advanced rectal cancer. Ann Surg Treat Res. 2022; 103:235–243. PMID: 36304190.
Article
15. Degiuli M, Elmore U, De Luca R, De Nardi P, Tomatis M, Biondi A, et al. Risk factors for anastomotic leakage after anterior resection for rectal cancer (RALAR study): a nationwide retrospective study of the Italian Society of Surgical Oncology Colorectal Cancer Network Collaborative Group. Colorectal Dis. 2022; 24:264–276. PMID: 34816571.
Article
16. Varela C, Nassr M, Razak A, Kim NK. Double-layered hand-sewn anastomosis: a valuable resource for the colorectal surgeon. Ann Coloproctol. 2022; 38:271–275. PMID: 35295072.
Article
17. Crafa F, Striano A, Esposito F, Rossetti AR, Baiamonte M, Gianfreda V, et al. The “reverse air leak test”: a new technique for the assessment of low colorectal anastomosis. Ann Coloproctol. 2022; 38:20–27. PMID: 33332954.
Article
18. Benčurik V, Škrovina M, Martínek L, Bartoš J, Macháčková M, Dosoudil M, et al. Intraoperative fluorescence angiography and risk factors of anastomotic leakage in mini-invasive low rectal resections. Surg Endosc. 2021; 35:5015–5023. PMID: 32970211.
Article
19. Alekseev M, Rybakov E, Khomyakov E, Zarodnyuk I, Shelygin Y. Intraoperative fluorescence angiography as an independent factor of anastomotic leakage and a nomogram for predicting leak for colorectal anastomoses. Ann Coloproctol. 2022; 38:380–386. PMID: 34289650.
Article
20. Dinallo AM, Kolarsick P, Boyan WP, Protyniak B, James A, Dressner RM, et al. Does routine use of indocyanine green fluorescence angiography prevent anastomotic leaks?: a retrospective cohort analysis. Am J Surg. 2019; 218:136–139. PMID: 30360896.
Article
21. Renna MS, Grzeda MT, Bailey J, Hainsworth A, Ourselin S, Ebner M, et al. Intraoperative bowel perfusion assessment methods and their effects on anastomotic leak rates: meta-analysis. Br J Surg. 2023; 110:1131–1142. PMID: 37253021.
Article
22. Emile SH, Khan SM, Wexner SD. Impact of change in the surgical plan based on indocyanine green fluorescence angiography on the rates of colorectal anastomotic leak: a systematic review and meta-analysis. Surg Endosc. 2022; 36:2245–2257. PMID: 35024926.
Article
23. Trastulli S, Munzi G, Desiderio J, Cirocchi R, Rossi M, Parisi A. Indocyanine green fluorescence angiography versus standard intraoperative methods for prevention of anastomotic leak in colorectal surgery: meta-analysis. Br J Surg. 2021; 108:359–372. PMID: 33778848.
Article
24. De Nardi P, Elmore U, Maggi G, Maggiore R, Boni L, Cassinotti E, et al. Intraoperative angiography with indocyanine green to assess anastomosis perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial. Surg Endosc. 2020; 34:53–60. PMID: 30903276.
Article
25. Alekseev M, Rybakov E, Shelygin Y, Chernyshov S, Zarodnyuk I. A study investigating the perfusion of colorectal anastomoses using fluorescence angiography: results of the FLAG randomized trial. Colorectal Dis. 2020; 22:1147–1153. PMID: 32189424.
Article
26. Jafari MD, Pigazzi A, McLemore EC, Mutch MG, Haas E, Rasheid SH, et al. Perfusion Assessment in Left-Sided/Low Anterior Resection (PILLAR III): a randomized, controlled, parallel, multicenter study assessing perfusion outcomes with PINPOINT near-infrared fluorescence imaging in low anterior resection. Dis Colon Rectum. 2021; 64:995–1002. PMID: 33872284.
Article
27. De Robles MS, Young CJ. Triple-staple technique effectively reduces operating time for rectal anastomosis. Ann Coloproctol. 2021; 37:16–20. PMID: 32054240.
Article
28. Tebala GD, Mingoli A, Natili A, Khan AQ, Brachini G. Surgical risk and pathological results of emergency resection in the treatment of acutely obstructing colorectal cancers: a retrospective cohort study. Ann Coloproctol. 2021; 37:21–28. PMID: 32178504.
Article
29. Meijer RP, Faber RA, Bijlstra OD, Braak JP, Meershoek-Klein Kranenbarg E, Putter H, et al. AVOID; a phase III, randomised controlled trial using indocyanine green for the prevention of anastomotic leakage in colorectal surgery. BMJ Open. 2022; 12:e051144.
Article
30. Iguchi K, Watanabe J, Suwa Y, Chida K, Atsumi Y, Numata M, et al. The usefulness of indocyanine green fluorescence imaging for intestinal perfusion assessment of intracorporeal anastomosis in laparoscopic colon cancer surgery. Int J Colorectal Dis. 2023; 38:7. PMID: 36625972.
Article
31. Rottoli M, Tanzanu M, Lanci AL, Gentilini L, Boschi L, Poggioli G. Mesenteric lengthening during pouch surgery: technique and outcomes in a tertiary centre. Updates Surg. 2021; 73:581–586. PMID: 33492620.
Article
32. Freund MR, Kent I, Agarwal S, Wexner SD. Use of indocyanine green fluorescence angiography during ileal J-pouch surgery requiring lengthening maneuvers. Tech Coloproctol. 2022; 26:181–186. PMID: 35091791.
Article
33. Hardy NP, Dalli J, Khan MF, Andrejevic P, Neary PM, Cahill RA. Inter-user variation in the interpretation of near infrared perfusion imaging using indocyanine green in colorectal surgery. Surg Endosc. 2021; 35:7074–7081. PMID: 33398567.
Article
34. Faber RA, Tange FP, Galema HA, Zwaan TC, Holman FA, Peeters KC, et al. Quantification of indocyanine green near-infrared fluorescence bowel perfusion assessment in colorectal surgery. Surg Endosc. 2023; 37:6824–6833. PMID: 37286750.
Article
35. Soares AS, Bano S, Clancy NT, Stoyanov D, Lovat LB, Chand M. Multisensor perfusion assessment cohort study: Preliminary evidence toward a standardized assessment of indocyanine green fluorescence in colorectal surgery. Surgery. 2022; 172:69–73. PMID: 35168814.
Article
36. Skrovina M, Bencurik V, Martinek L, Machackova M, Bartos J, Andel P, et al. The significance of intraoperative fluorescence angiography in miniinvasive low rectal resections. Wideochir Inne Tech Maloinwazyjne. 2020; 15:43–48. PMID: 32117485.
Article
37. Yanagita T, Hara M, Osaga S, Nakai N, Maeda Y, Shiga K, et al. Efficacy of intraoperative ICG fluorescence imaging evaluation for preventing anastomotic leakage after left-sided colon or rectal cancer surgery: a propensity score-matched analysis. Surg Endosc. 2021; 35:2373–2385. PMID: 33495878.
Article
38. Castagneto-Gissey L, Iodice A, Urciuoli P, Pontone S, Salvati B, Casella G. Novel modality of endoluminal anastomotic integrity assessment with fluoroangiography after left-sided colorectal resections. World J Surg. 2023; 47:1303–1309. PMID: 36694037.
Article
39. Lauricella S, Peyser D, Carrano FM, Sylla P. Intraluminal anastomotic assessment using indocyanine green near-infrared imaging for left-sided colonic and rectal resections: a systematic review. J Gastrointest Surg. 2023; 27:615–625. PMID: 36604377.
Article
40. Chand M, Keller DS, Joshi HM, Devoto L, Rodriguez-Justo M, Cohen R. Feasibility of fluorescence lymph node imaging in colon cancer: FLICC. Tech Coloproctol. 2018; 22:271–277. PMID: 29551004.
Article
41. Ahn HM, Son GM, Lee IY, Shin DH, Kim TK, Park SB, et al. Optimal ICG dosage of preoperative colonoscopic tattooing for fluorescence-guided laparoscopic colorectal surgery. Surg Endosc. 2022; 36:1152–1163. PMID: 33638107.
Article
42. Ribero D, Mento F, Sega V, Lo Conte D, Mellano A, Spinoglio G. ICG-guided lymphadenectomy during surgery for colon and rectal cancer-interim analysis of the GREENLIGHT Trial. Biomedicines. 2022; 10:541. PMID: 35327344.
Article
43. Wan J, Wang S, Yan B, Tang Y, Zheng J, Ji H, et al. Indocyanine green for radical lymph node dissection in patients with sigmoid and rectal cancer: randomized clinical trial. BJS Open. 2022; 6:zrac151. PMID: 36515673.
Article
44. Ho MF, Futaba K, Mak TW, Ng SS. Personalized laparoscopic resection of colon cancer with the use of indocyanine green lymph node mapping: technical and clinical outcomes. Asian J Endosc Surg. 2022; 15:563–568. PMID: 35261162.
Article
45. Ushijima H, Kawamura J, Ueda K, Yane Y, Yoshioka Y, Daito K, et al. Visualization of lymphatic flow in laparoscopic colon cancer surgery using indocyanine green fluorescence imaging. Sci Rep. 2020; 10:14274. PMID: 32868829.
Article
46. Kinoshita H, Kawada K, Itatani Y, Okamura R, Oshima N, Okada T, et al. Timing of real-time indocyanine green fluorescence visualization for lymph node dissection during laparoscopic colon cancer surgery. Langenbecks Arch Surg. 2023; 408:38. PMID: 36650252.
Article
47. Lucas K, Melling N, Giannou AD, Reeh M, Mann O, Hackert T, et al. Lymphatic mapping in colon cancer depending on injection time and tracing agent: a systematic review and meta-analysis of prospective designed studies. Cancers (Basel). 2023; 15:3196. PMID: 37370806.
Article
48. Ankersmit M, Bonjer HJ, Hannink G, Schoonmade LJ, van der Pas MH, Meijerink WJ. Near-infrared fluorescence imaging for sentinel lymph node identification in colon cancer: a prospective single-center study and systematic review with meta-analysis. Tech Coloproctol. 2019; 23:1113–1126. PMID: 31741099.
Article
49. Villegas-Tovar E, Jimenez-Lillo J, Jimenez-Valerio V, Diaz-Giron-Gidi A, Faes-Petersen R, Otero-Piñeiro A, et al. Performance of Indocyanine green for sentinel lymph node mapping and lymph node metastasis in colorectal cancer: a diagnostic test accuracy meta-analysis. Surg Endosc. 2020; 34:1035–1047. PMID: 31754853.
Article
50. Burghgraef TA, Zweep AL, Sikkenk DJ, van der Pas MH, Verheijen PM, Consten EC. In vivo sentinel lymph node identification using fluorescent tracer imaging in colon cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021; 158:103149. PMID: 33450679.
Article
51. Kim MC, Oh JH. Lateral pelvic lymph node dissection after neoadjuvant chemoradiotherapy in patients with rectal cancer: a single-center experience and literature review. Ann Coloproctol. 2021; 37:382–394. PMID: 34961302.
Article
52. Mahendran B, Balasubramanya S, Sebastiani S, Smolarek S. Extended lymphadenectomy in locally advanced rectal cancers: a systematic review. Ann Coloproctol. 2022; 38:3–12. PMID: 34788526.
Article
53. Ogura A, Konishi T, Cunningham C, Garcia-Aguilar J, Iversen H, Toda S, et al. Neoadjuvant (chemo)radiotherapy with total mesorectal excision only is not sufficient to prevent lateral local recurrence in enlarged nodes: results of the multicenter lateral node study of patients with low cT3/4 rectal cancer. J Clin Oncol. 2019; 37:33–43. PMID: 30403572.
Article
54. Lim BL, Park IJ, Kim YI, Kim CW, Lee JL, Yoon YS, et al. Difference in prognostic impact of lateral pelvic lymph node metastasis between pre- and post-neoadjuvant chemoradiotherapy in rectal cancer patients. Ann Surg Treat Res. 2023; 104:205–213. PMID: 37051159.
Article
55. Zhou SC, Tian YT, Wang XW, Zhao CD, Ma S, Jiang J, et al. Application of indocyanine green-enhanced near-infrared fluorescence-guided imaging in laparoscopic lateral pelvic lymph node dissection for middle-low rectal cancer. World J Gastroenterol. 2019; 25:4502–4511. PMID: 31496628.
Article
56. Dai JY, Han ZJ, Wang JD, Liu BS, Liu JY, Wang YC. Short-term outcomes of near-infrared imaging using indocyanine green in laparoscopic lateral pelvic lymph node dissection for middle-lower rectal cancer: a propensity score-matched cohort analysis. Front Med (Lausanne). 2022; 9:1039928. PMID: 36438036.
Article
57. Kim HJ, Choi GS, Park JS, Park SY, Cho SH, Seo AN, et al. S122: impact of fluorescence and 3D images to completeness of lateral pelvic node dissection. Surg Endosc. 2020; 34:469–476. PMID: 31139999.
Article
58. Watanabe J, Ohya H, Sakai J, Suwa Y, Goto K, Nakagawa K, et al. Long-term outcomes of indocyanine green fluorescence imaging-guided laparoscopic lateral pelvic lymph node dissection for clinical stage II/III middle-lower rectal cancer: a propensity score-matched cohort study. Tech Coloproctol. 2023; 27:759–767. PMID: 36773172.
Article
59. Su H, Xu Z, Bao M, Luo S, Liang J, Pei W, et al. Lateral pelvic sentinel lymph node biopsy using indocyanine green fluorescence navigation: can it be a powerful supplement tool for predicting the status of lateral pelvic lymph nodes in advanced lower rectal cancer. Surg Endosc. 2023; 37:4088–4096. PMID: 36997652.
Article
60. Yasui M, Ohue M, Noura S, Miyoshi N, Takahashi Y, Matsuda C, et al. Exploratory analysis of lateral pelvic sentinel lymph node status for optimal management of laparoscopic lateral lymph node dissection in advanced lower rectal cancer without suspected lateral lymph node metastasis. BMC Cancer. 2021; 21:911. PMID: 34380428.
Article
61. Satou S, Ishizawa T, Masuda K, Kaneko J, Aoki T, Sakamoto Y, et al. Indocyanine green fluorescent imaging for detecting extrahepatic metastasis of hepatocellular carcinoma. J Gastroenterol. 2013; 48:1136–1143. PMID: 23179608.
Article
62. Barabino G, Klein JP, Porcheron J, Grichine A, Coll JL, Cottier M. Intraoperative near-infrared fluorescence imaging using indocyanine green in colorectal carcinomatosis surgery: proof of concept. Eur J Surg Oncol. 2016; 42:1931–1937. PMID: 27378159.
Article
63. Liberale G, Vankerckhove S, Caldon MG, Ahmed B, Moreau M, Nakadi IE, et al. Fluorescence imaging after indocyanine green injection for detection of peritoneal metastases in patients undergoing cytoreductive surgery for peritoneal carcinomatosis from colorectal cancer: a pilot study. Ann Surg. 2016; 264:1110–1115. PMID: 27828822.
Article
64. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000; 65:271–284. PMID: 10699287.
Article
65. Maeda H. The link between infection and cancer: tumor vasculature, free radicals, and drug delivery to tumors via the EPR effect. Cancer Sci. 2013; 104:779–789. PMID: 23495730.
Article
66. Liberale G, Bourgeois P, Larsimont D, Moreau M, Donckier V, Ishizawa T. Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: a systematic review. Eur J Surg Oncol. 2017; 43:1656–1667. PMID: 28579357.
Article
67. Kim YJ, Kim CH. Treatment for peritoneal metastasis of patients with colorectal cancer. Ann Coloproctol. 2021; 37:425–433. PMID: 34961304.
Article
68. Lieto E, Auricchio A, Cardella F, Mabilia A, Basile N, Castellano P, et al. Fluorescence-guided surgery in the combined treatment of peritoneal carcinomatosis from colorectal cancer: preliminary results and considerations. World J Surg. 2018; 42:1154–1160. PMID: 28929277.
Article
69. González-Abós C, Selva AB, de Lacy FB, Valverde S, A lmenara R, Lacy AM. Quantitative indocyanine green fluorescence imaging assessment for nonmucinous peritoneal metastases: preliminary results of the ICCP Study. Dis Colon Rectum. 2022; 65:314–321. PMID: 34775406.
Article
70. Baiocchi GL, Gheza F, Molfino S, Arru L, Vaira M, Giacopuzzi S. Indocyanine green fluorescence-guided intraoperative detection of peritoneal carcinomatosis: systematic review. BMC Surg. 2020; 20:158. PMID: 32680492.
Article
71. Aloia TA, Vauthey JN, Loyer EM, Ribero D, Pawlik TM, Wei SH, et al. Solitary colorectal liver metastasis: resection determines outcome. Arch Surg. 2006; 141:460–467. PMID: 16702517.
72. Park SH, Shin JK, Lee WY, Yun SH, Cho YB, Huh JW, et al. Clinical outcomes of neoadjuvant chemotherapy in colorectal cancer patients with synchronous resectable liver metastasis: a propensity score matching analysis. Ann Coloproctol. 2021; 37:244–252. PMID: 34182620.
Article
73. Liu W, Zhang ZY, Yin SS, Yan K, Xing BC. Contrast-enhanced intraoperative ultrasound improved sensitivity and positive predictive value in colorectal liver metastasis: a systematic review and meta-analysis. Ann Surg Oncol. 2021; 28:3763–3773. PMID: 33247361.
Article
74. Peloso A, Franchi E, Canepa MC, Barbieri L, Briani L, Ferrario J, et al. Combined use of intraoperative ultrasound and indocyanine green fluorescence imaging to detect liver metastases from colorectal cancer. HPB (Oxford). 2013; 15:928–934. PMID: 23458105.
Article
75. He K, Hong X, Chi C, Cai C, An Y, Li P, et al. Efficacy of near-infrared fluorescence-guided hepatectomy for the detection of colorectal liver metastases: a randomized controlled trial. J Am Coll Surg. 2022; 234:130–137. PMID: 35213433.
Article
76. ASGE Technology Committee. Kethu SR, Banerjee S, Desilets D, Diehl DL, Farraye FA, et al. Endoscopic tattooing. Gastrointest Endosc. 2010; 72:681–685. PMID: 20883844.
Article
77. Miyoshi N, Ohue M, Noura S, Yano M, Sasaki Y, Kishi K, et al. Surgical usefulness of indocyanine green as an alternative to India ink for endoscopic marking. Surg Endosc. 2009; 23:347–351. PMID: 18443867.
Article
78. Watanabe M, Tsunoda A, Narita K, Kusano M, Miwa M. Colonic tattooing using fluorescence imaging with light-emitting diode-activated indocyanine green: a feasibility study. Surg Today. 2009; 39:214–218. PMID: 19280280.
Article
79. Konstantinidis MK, Ioannidis A, Vassiliu P, Arkadopoulos N, Papanikolaou IS, Stavridis K, et al. Preoperative tumor marking with indocyanine green (ICG) prior to minimally invasive colorectal cancer: a systematic review of current literature. Front Surg. 2023; 10:1258343. PMID: 37638121.
Article
80. Noura S, Ohue M, Seki Y, Tanaka K, Motoori M, Kishi K, et al. Feasibility of a lateral region sentinel node biopsy of lower rectal cancer guided by indocyanine green using a near-infrared camera system. Ann Surg Oncol. 2010; 17:144–151. PMID: 19774415.
Article
Full Text Links
  • ASTR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr