Korean J Physiol Pharmacol.  2022 Nov;26(6):501-509. 10.4196/kjpp.2022.26.6.501.

Thermotherapy as an alternative to exercise for metabolic health in obese postmenopausal women: focus on circulating irisin level

Affiliations
  • 1Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
  • 2Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea
  • 3Department of Occupational and Environmental Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea

Abstract

Irisin is a myokine caused by exercise that improves insulin resistance and weight loss. However, under unfavorable conditions such as air pollution, and during the pandemic, outdoor activities are uncomfortable. Therefore, in this study, the effect of heat therapy (half bath 42 ± 0.5°C for 30 min) on irisin circulation levels as an exercise alternative for middle-aged obese women after menopause was investigated. Subjects were 33 women aged 49.54 ± 6.04 years, with parameters of height, 160.12 ± 4.33 cm, weight, 69.71 ± 7.52 kg, body surface area 1.73 ± 0.13 m2 , body mass index, 27.19 ± 3.40 kg/m2 . The results suggest that circulating irisin levels showed a significant increase after one-time thermotherapy (TH-1). However, the increase in circulating irisin levels after 15 treatments (TH-15, 5 days/week, 3 weeks) was significantly varied. The level of adiponectin, which increases fatty oxidation to reduce fatty deposition, increased significantly at TH-1, but further increased at TH-15, which was significantly different from the level of TH-1. In addition, the basic serum free fatty acid (FFA) level was significantly increased at TH-15 compared to TH-1. Significant differences were also found in the lipid profile (body mass index, waist circumference, and % body fat). Thermotherapy can significantly increase the tympanic temperature and induce changes in circulating irisin and adiponectin levels. Thus, it resulted in positive changes in FFA and lipid profiles. Therefore, repeated thermotherapy is effective in increasing circulating irisin levels in postmenopausal obese women.

Keyword

Adiponectin; Free fatty acid; Half bath; Irisin; Thermotherapy

Figure

  • Fig. 1 Schematic representation of the experimental protocol condition in air temperature 25.0 ± 0.5°C and relative humidity 60.0 ± 3.0%. Heat stimulation entailed immersing half of the body into a hot water bath (42 ± 0.5°C) for total 30 min and break for total 30 min. Blood sampling was done before immersion (Pre) and immediately after the last break (Post). Tympanic and local skin temperature measurements were conducted continuously at 10-sec intervals for 60 min.

  • Fig. 2 Tympanic temperature and basal metabolic rate. (A) Tympanic temperature, Pre (white circle) and Post (black circle), (B) basal metabolic rate (BMR), Pre (white bar) and Post (black bar) on thermotherapy. TH-1 (pre □: 28.27 ± 8.06 kcal/kg/day vs. post ■: 41.62 ± 9.13 kcal/kg/day, ***p < 0.001) and TH-15 (pre □: 32.41 ± 9.52 kcal/kg/day vs. post ■: 49.32 ± 10.64 kcal/kg/day, ***p < 0.001) for differences between Pre vs. Post. #p < 0.01, ##p < 0.01, and ###p < 0.001 for difference between TH-1 and TH-15. Values (n = 33) are mean ± SD. Resting BMR of TH-15 was significantly higher than in TH-1 (before thermotherapy, 28.27 ± 8.06 kcal/kg/day vs. 41.62 ± 9.13 kcal/kg/day, ##p < 0.01). BMR was increased by 13.35 kcal/kg/day (***p < 0.001) in TH-1 and by 16.91 kcal/kg/day (***p < 0.001) in TH-15. TH, thermotherapy, immersing half-bath, 42 ± 0.5°C for 60 min (5-min break at 5-min intervals); TH-1, application of thermotherapy once; TH-15, application of thermotherapy repeated 15 times.

  • Fig. 3 Correlation between the tympanic temperature and basal metabolic rate (BMR) before (Pre; ◦) and after (Post; •) hot water bath (42 ± 0.5°C) immersion at TH-15. TH, thermotherapy. ***p < 0.001, statistically significant difference (Pre; R2 = 0.671, Post; R2 = 0.664).

  • Fig. 4 Changes in the levels of irisin following thermotherapy. Values (n = 33) are mean ± SD. Changes in the levels of circulating irisin. Statistically significant differences were found between Pre and Post, ***p < 0.001, and significant differences betweenTH-1 and TH-15, ##p < 0.01. TH, thermotherapy, immersing half-bath, 42 ± 0.5°C for 60 min (5-min break at 5-min intervals); TH-1, application of thermotherapy once; TH-15, application of thermotherapy repeated 15 times.

  • Fig. 5 Correlation between the tympanic temperature and irisin concentration before (Pre; ◦) and after (Post; •) hot water bath (42 ± 0.5°C) immersion at TH-15. TH, thermotherapy. **p < 0.01, statistically significant difference (Pre; R2 = 0.653, Post; R2 = 0.653).

  • Fig. 6 Changes in adiponectin levels based on thermotherapy. Values (n = 33) are mean ± SD. Statistically significant differences were found between Pre and Post, ***p < 0.001, and significant differences between TH-1 and TH-15, ##p < 0.01. TH, thermotherapy, immersing half-bath, 42 ± 0.5°C for 60 min (5-min break at 5-min intervals); TH-1, application of thermotherapy once; TH-15, application of thermotherapy repeated 15 times.

  • Fig. 7 Changes in the levels of free fatty acids (FFA) based on thermotherapy. Values (n = 33) are mean ± SD. Statistically significant differences were found between Pre and Post, ***p < 0.001, and significant differences were found between TH-1 and TH-15, ##p < 0.01. TH, thermotherapy, immersing half-bath, 42 ± 0.5°C for 60 min (5-min break at 5-min intervals); TH-1, application of thermotherapy once; TH-15, application of thermotherapy repeated 15 times.

  • Fig. 8 Changes in the levels of whole body sweat loss volume based on thermotherapy. Values (n = 33) are mean ± SD. Statistically significant differences between TH-1 and TH-15 (###p < 0.001). TH, thermotherapy, immersing half-bath, 42 ± 0.5°C for 60 min (5-min break at 5-min intervals); TH-1, application of thermotherapy once; TH-15, application of thermotherapy repeated 15 times.


Reference

1. Yang HJ, Suh PS, Kim SJ, Lee SY. 2015; Effects of smoking on menopausal age: results from the Korea National Health and Nutrition Examination Survey, 2007 to 2012. J Prev Med Public Health. 48:216–224. DOI: 10.3961/jpmph.15.021. PMID: 26265667. PMCID: PMC4542296. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84938827154&origin=inward.
Article
2. Amiri P, Deihim T, Nakhoda K, Hasheminia M, Montazeri A, Azizi F. 2014; Metabolic syndrome and health-related quality of life in reproductive age and post-menopausal women: Tehran Lipid and Glucose Study. Arch Iran Med. 17:423–428. PMID: 24916528. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84902526881&origin=inward.
3. Nappi RE, Palacios S. 2014; Impact of vulvovaginal atrophy on sexual health and quality of life at postmenopause. Climacteric. 17:3–9. DOI: 10.3109/13697137.2013.871696. PMID: 24423885. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84892737699&origin=inward.
Article
4. Goh VHH, Hart WG. 2018; Excess fat in the abdomen but not general obesity is associated with poorer metabolic and cardiovascular health in premenopausal and postmenopausal Asian women. Maturitas. 107:33–38. DOI: 10.1016/j.maturitas.2017.10.002. PMID: 29169577. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85030837752&origin=inward.
Article
5. Wulan SN, Westerterp KR, Plasqui G. 2010; Ethnic differences in body composition and the associated metabolic profile: a comparative study between Asians and Caucasians. Maturitas. 65:315–319. DOI: 10.1016/j.maturitas.2009.12.012. PMID: 20079586. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77649180244&origin=inward.
Article
6. Mauvais-Jarvis F, Clegg DJ, Hevener AL. 2013; The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 34:309–338. DOI: 10.1210/er.2012-1055. PMID: 23460719. PMCID: PMC3660717. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84878632677&origin=inward.
Article
7. Palmisano BT, Zhu L, Eckel RH, Stafford JM. 2018; Sex differences in lipid and lipoprotein metabolism. Mol Metab. 15:45–55. DOI: 10.1016/j.molmet.2018.05.008. PMID: 29858147. PMCID: PMC6066747. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047506095&origin=inward.
Article
8. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM. 2012; A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 481:463–468. DOI: 10.1038/nature10777. PMID: 22237023. PMCID: PMC3522098. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84862776702&origin=inward.
Article
9. Rodríguez A, Becerril S, Ezquerro S, Méndez-Giménez L, Frühbeck G. 2017; Crosstalk between adipokines and myokines in fat browning. Acta Physiol (Oxf). 219:362–381. DOI: 10.1111/apha.12686. PMID: 27040995. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85010850003&origin=inward.
Article
10. Miyamoto-Mikami E, Sato K, Kurihara T, Hasegawa N, Fujie S, Fujita S, Sanada K, Hamaoka T, Tabata I, Iemitsu M. 2015; Endurance training-induced increase in circulating irisin levels is associated with reduction of abdominal visceral fat in middle-aged and older adults. PLoS One. 10:e0120354. DOI: 10.1371/journal.pone.0120354. PMID: 25793753. PMCID: PMC4368602. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84925779021&origin=inward.
Article
11. Park TH, Lee HJ, Lee JB. 2021; Effect of heat stimulation on circulating irisin in humans. Front Physiol. 12:675377. DOI: 10.3389/fphys.2021.675377. PMID: 34262475. PMCID: PMC8273865. PMID: 6976cbe75b804346b69b026449b67bbc. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85109879766&origin=inward.
Article
12. Wenger CB. 1972; Heat of evaporation of sweat: thermodynamic considerations. J Appl Physiol. 32:456–459. DOI: 10.1152/jappl.1972.32.4.456. PMID: 5026491. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0015324876&origin=inward.
Article
13. Sawka MN, Leon LR, Montain SJ, Sonna LA. 2011; Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol. 1:1883–1928. DOI: 10.1002/cphy.c100082. PMID: 23733692. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84857658040&origin=inward.
Article
14. Baker LB. 2017; Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med. 47(Suppl 1):111–128. DOI: 10.1007/s40279-017-0691-5. PMID: 28332116. PMCID: PMC5371639. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85015929812&origin=inward.
Article
15. de Araújo AL, Silva LC, Fernandes JR, Benard G. 2013; Preventing or reversing immunosenescence: can exercise be an immunotherapy? Immunotherapy. 5:879–893. DOI: 10.2217/imt.13.77. PMID: 23902557. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84881290703&origin=inward.
Article
16. Baker A, Sirois-Leclerc H, Tulloch H. 2016; The impact of long-term physical activity interventions for overweight/obese postmenopausal women on adiposity indicators, physical capacity, and mental health outcomes: a systematic review. J Obes. 2016:6169890. DOI: 10.1155/2016/6169890. PMID: 27293882. PMCID: PMC4884891. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84973364653&origin=inward.
Article
17. Wendling ZA, Emerson JW, Esty DC, Levy MA, de Sherbinin A. 2018. 2018 Environmental performance index. Yale Center for Environmental Law & Policy;New Haven: https://epi.yale.edu/downloads/epi2018reportv06191901.pdf. DOI: 10.2217/imt.13.77. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84881290703&origin=inward.
18. Zhou M, Liu Y, Wang L, Kuang X, Xu X, Kan H. 2014; Particulate air pollution and mortality in a cohort of Chinese men. Environ Pollut. 186:1–6. DOI: 10.1016/j.envpol.2013.11.010. PMID: 24333659. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84890191832&origin=inward.
Article
19. AirKorea. Fine dust [Internet]. AirKorea;Incheon: Available from: https://www.airkorea.or.kr/web/pmWarning?pMENU_NO=115. cited 2020 Jul 1.
20. Ritz B, Hoffmann B, Peters A. 2019; The effects of fine dust, ozone, and nitrogen dioxide on health. Dtsch Arztebl Int. 51-52:881–886. DOI: 10.3238/arztebl.2019.0881. PMID: 31941576. PMCID: PMC6976917. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077941113&origin=inward.
Article
21. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO. 2000; Climate extremes: observations, modeling, and impacts. Science. 289:2068–2074. DOI: 10.1126/science.289.5487.2068. PMID: 11000103. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034703308&origin=inward.
Article
22. Meehl GA, Tebaldi C. 2004; More intense, more frequent, and longer lasting heat waves in the 21st century. Science. 305:994–997. DOI: 10.1126/science.1098704. PMID: 15310900. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=4043154304&origin=inward.
Article
23. Slezakova K, Pereira MC, Morais S. 2020; Ultrafine particles: levels in ambient air during outdoor sport activities. Environ Pollut. 258:113648. DOI: 10.1016/j.envpol.2019.113648. PMID: 31806467. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85076231069&origin=inward.
Article
24. Lee JB, Kim TW, Min YK, Yang HM. 2013; Seasonal acclimatization to the hot summer over 60 days in the Republic of Korea suppresses sweating sensitivity during passive heating. J Therm Biol. 38:294–299. https://doi.org/10.1016/j.jtherbio.2013.03.006. DOI: 10.1016/j.jtherbio.2013.03.006. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84877023854&origin=inward.
Article
25. Shin YO, Lee JB, Min YK, Yang HM. 2013; Heat acclimation affects circulating levels of prostaglandin E2, COX-2 and orexin in humans. Neurosci Lett. 542:17–20. DOI: 10.1016/j.neulet.2013.03.017. PMID: 23523649. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84876744845&origin=inward.
Article
26. Lee J, Shin Y. 2017; Comparison of density and output of sweat gland in tropical Africans and temperate Koreans. Auton Neurosci. 205:67–71. DOI: 10.1016/j.autneu.2017.05.004. PMID: 28506659. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019094091&origin=inward.
Article
27. Lee JB, Kim JH. 2018; Decreased thermal sweating of central sudomotor mechanism in African and Korean men. Am J Hum Biol. 30:e23091. DOI: 10.1002/ajhb.23091. PMID: 29341311. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047994485&origin=inward.
Article
28. Ramanathan NL. 1964; A new weighting system for mean surface temperature of the human body. J Appl Physiol. 19:531–533. DOI: 10.1152/jappl.1964.19.3.531. PMID: 14173555. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=14944349971&origin=inward.
Article
29. Sugenoya J, Ogawa T. 1985; Characteristics of central sudomotor mechanism estimated by frequency of sweat expulsions. Jpn J Physiol. 35:783–794. DOI: 10.2170/jjphysiol.35.783. PMID: 4079134. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0022394986&origin=inward.
Article
30. Kim TW, Lee JB. 2013; The effects of caffeine ingestion before passive heat loading on serum leptin levels in humans. Appl Biochem Biotechnol. 171:1253–1261. DOI: 10.1007/s12010-013-0296-x. PMID: 23709289. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84888129274&origin=inward.
Article
31. Lee JB, Kim TW. 2015; Increased levels of FFA during passive heat loading after a 2-week repeated heat load in Koreans. Int J Biometeorol. 59:473–475. DOI: 10.1007/s00484-014-0849-x. PMID: 24865598. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84939895547&origin=inward.
Article
32. Kim TW, Shin YO, Lee JB, Min YK, Yang HM. 2010; Effect of caffeine on the metabolic responses of lipolysis and activated sweat gland density in human during physical activity. Food Sci Biotechnol. 19:1077–1081. https://link.springer.com/article/10.1007/s10068-010-0151-6. DOI: 10.1007/s10068-010-0151-6. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79957650578&origin=inward.
Article
33. Weir JB. 1949; New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 109:1–9. DOI: 10.1113/jphysiol.1949.sp004363. PMID: 15394301. PMCID: PMC1392602. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=8944256349&origin=inward.
Article
34. Lee JB, Kim TW. 2014; Passive heat loading links lipolysis and regulation of fibroblast growth factor-21 in humans. J Therm Biol. 45:163–167. DOI: 10.1016/j.jtherbio.2014.09.004. PMID: 25436966. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84907553418&origin=inward.
Article
35. Pörtner HO. 2001; Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften. 88:137–146. DOI: 10.1007/s001140100216. PMID: 11480701. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034978152&origin=inward.
Article
36. Samy DM, Ismail CA, Nassra RA. 2015; Circulating irisin concentrations in rat models of thyroid dysfunction -- effect of exercise. Metabolism. 64:804–813. DOI: 10.1016/j.metabol.2015.01.001. PMID: 25720940. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929654073&origin=inward.
Article
37. Kim KH, Kim SH, Min YK, Yang HM, Lee JB, Lee MS. 2013; Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One. 8:e63517. DOI: 10.1371/journal.pone.0063517. PMID: 23667629. PMCID: PMC3646740. PMID: c6eb509b4526482e856d21e796d282c2. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84877149547&origin=inward.
Article
38. Brindley RL, Bauer MB, Blakely RD, Currie KPM. 2017; Serotonin and serotonin transporters in the adrenal medulla: a potential hub for modulation of the sympathetic stress response. ACS Chem Neurosci. 8:943–954. DOI: 10.1021/acschemneuro.7b00026. PMID: 28406285. PMCID: PMC5541362. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019610825&origin=inward.
Article
39. Sternfeld B, Wang H, Quesenberry CP Jr, Abrams B, Everson-Rose SA, Greendale GA, Matthews KA, Torrens JI, Sowers M. 2004; Physical activity and changes in weight and waist circumference in midlife women: findings from the Study of Women's Health Across the Nation. Am J Epidemiol. 160:912–922. DOI: 10.1093/aje/kwh299. PMID: 15496544. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=7244253095&origin=inward.
Article
40. Karakelides H, Nair KS. 2005; Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol. 68:123–148. DOI: 10.1016/S0070-2153(05)68005-2. PMID: 16124998. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=25144501166&origin=inward.
Article
41. Kuk JL, Saunders TJ, Davidson LE, Ross R. 2009; Age-related changes in total and regional fat distribution. Ageing Res Rev. 8:339–348. DOI: 10.1016/j.arr.2009.06.001. PMID: 19576300. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=69049093712&origin=inward.
Article
42. Ahima RS, Flier JS. 2000; Adipose tissue as an endocrine organ. Trends Endocrinol Metab. 11:327–332. DOI: 10.1016/S1043-2760(00)00301-5. PMID: 10996528. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033789518&origin=inward.
Article
43. Fang H, Judd RL. 2018; Adiponectin regulation and function. Compr Physiol. 8:1031–1063. DOI: 10.1002/cphy.c170046. PMID: 29978896. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050621609&origin=inward.
Article
44. Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D. 2003; Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA. 289:1799–1804. DOI: 10.1001/jama.289.14.1799. PMID: 12684358. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0037840403&origin=inward.
Article
45. Gavrila A, Chan JL, Yiannakouris N, Kontogianni M, Miller LC, Orlova C, Mantzoros CS. 2003; Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: cross-sectional and interventional studies. J Clin Endocrinol Metab. 88:4823–4831. DOI: 10.1210/jc.2003-030214. PMID: 14557461. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0242288690&origin=inward.
Article
46. Sun L, Yan J, Goh HJ, Govindharajulu P, Verma S, Michael N, Sadananthan SA, Henry CJ, Velan SS, Leow MK. 2020; Fibroblast growth factor-21, leptin, and adiponectin responses to acute cold-induced brown adipose tissue activation. J Clin Endocrinol Metab. 105:e520–e531. DOI: 10.1210/clinem/dgaa005. PMID: 31912874. PMCID: PMC7015460. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85079356511&origin=inward.
Article
47. Toczylowski K, Hirnle T, Harasiuk D, Zabielski P, Lewczuk A, Dmitruk I, Ksiazek M, Sulik A, Gorski J, Chabowski A, Baranowski M. 2019; Plasma concentration and expression of adipokines in epicardial and subcutaneous adipose tissue are associated with impaired left ventricular filling pattern. J Transl Med. 17:310. DOI: 10.1186/s12967-019-2060-7. PMID: 31533725. PMCID: PMC6751580. PMID: 021fb97085e549cb9cb651d42d29b10e. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85072374784&origin=inward.
Article
48. Oláh M, Koncz A, Fehér J, Kálmánczhey J, Oláh C, Balogh S, Nagy G, Bender T. 2010; The effect of balneotherapy on C-reactive protein, serum cholesterol, triglyceride, total antioxidant status and HSP-60 levels. Int J Biometeorol. 54:249–254. DOI: 10.1007/s00484-009-0276-6. PMID: 19937457. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77951769044&origin=inward.
Article
49. Ishikawa J, Yoshino Y, Watanabe S, Harada K. 2016; Reduction in central blood pressure after bathing in hot water. Blood Press Monit. 21:80–86. DOI: 10.1097/MBP.0000000000000167. PMID: 26657048. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84949895347&origin=inward.
Article
50. Janssen CW, Lowry CA, Mehl MR, Allen JJ, Kelly KL, Gartner DE, Medrano A, Begay TK, Rentscher K, White JJ, Fridman A, Roberts LJ, Robbins ML, Hanusch KU, Cole SP, Raison CL. 2016; Whole-body hyperthermia for the treatment of major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 73:789–795. DOI: 10.1001/jamapsychiatry.2016.1031. PMID: 27172277. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84982792300&origin=inward.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr