Kosin Med J.  2022 Mar;37(1):46-51. 10.7180/kmj.21.035.

Comparison of the radiation dose between dual-acquisition coronary computed tomography angiography and coronary angiography for coronary spasm

Affiliations
  • 1Division of Cardiology, Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
  • 2Department of Cardiology, Dong-A University Hospital, Busan, Korea
  • 3Department of Radiology, Dong-A University Hospital, Busan, Korea

Abstract

Background
Coronary computed tomography angiography (CCTA) is an imaging technique that can be used to evaluate and diagnose coronary artery stenosis. Dual-acquisition CCTA (DA-CCTA) with additional nitrate infusion is a promising alternative noninvasive diagnostic tool, as conventional CCTA has limitations in the diagnosis of variant angina compared to conventional angiographic coronary spasm tests. However, DA-CCTA may pose a potential risk due to radiation exposure. We compared the radiation dose between DA-CCTA and the coronary angiographic spasm provocation test.
Methods
Patients with clinically suspected variant angina at a single hospital between March 2013 and October 2018 were screened and underwent DA-CCTA or a coronary angiographic spasm provocation test. The effective radiation dose required for each approach was compared.
Results
In total, 211 suspected variant angina patients underwent DA-CCTA or the coronary angiographic spasm provocation test. Of these, 49 patients (mean age, 59.8 years; 67.3% men) received DA-CCTA and 162 patients (mean age, 60.5 years; 66.2% men) received a coronary angiographic spasm provocation test. There was a significant difference in the effective radiation dose, with a median dose of 5.1 mSv (interquartile range [IQR], 4.1–9.2 mSv) required for DA-CCTA and a median dose of 10.9 mSv (IQR, 8.4–15.2 mSv) for the coronary angiographic spasm provocation test (p<0.001).
Conclusion
DA-CCTA showed a significantly lower effective radiation dose than the coronary angiographic spasm provocation test required to diagnose variant angina.

Keyword

Computed tomography; Coronary angiography; Coronary vasospasm; Effective dose; Radiation

Figure

  • Fig. 1. Comparison of the effective radiation dose between the CAG and CCTA groups. The effective radiation dose was significantly higher in the CAG group than in the CCTA group. Values in the figure are in the median. CCTA, coronary computed tomography angiography; CAG, coronary angiography. a)p<0.001.

  • Fig. 2. Differences in radiation exposure according to diagnosis in the coronary angiography (CAG) group. In the CAG group, the dose area product differed according to the results from the ergonovine provocation test (positive, equivocal, negative: 61.1 vs. 82.1 vs. 54.9, p<0.05).


Reference

References

1. Charles M. UNSCEAR report 2000: sources and effects of ionizing radiation. United Nations Scientific Comittee on the Effects of Atomic Radiation. J Radiol Prot. 2001; 21:83–6.
2. Lucas FL, DeLorenzo MA, Siewers AE, Wennberg DE. Temporal trends in the utilization of diagnostic testing and treatments for cardiovascular disease in the United States, 1993-2001. Circulation. 2006; 113:374–9.
Article
3. Chen J, Einstein AJ, Fazel R, Krumholz HM, Wang Y, Ross JS, et al. Cumulative exposure to ionizing radiation from diagnostic and therapeutic cardiac imaging procedures: a population-based analysis. J Am Coll Cardiol. 2010; 56:702–11.
4. Harbron RW, Chapple CL, O’Sullivan JJ, Best KE, Berrington de Gonzalez A, Pearce MS. Survival adjusted cancer risks attributable to radiation exposure from cardiac catheterisations in children. Heart. 2017; 103:341–6.
Article
5. Harrison D, Ricciardello M, Collins L. Evaluation of radiation dose and risk to the patient from coronary angiography. Aust N Z J Med. 1998; 28:597–603.
Article
6. Ghoshhajra BB, Engel LC, Major GP, Goehler A, Techasith T, Verdini D, et al. Evolution of coronary computed tomography radiation dose reduction at a tertiary referral center. Am J Med. 2012; 125:764–72.
Article
7. Hohl C, Muhlenbruch G, Wildberger JE, Leidecker C, Suss C, Schmidt T, et al. Estimation of radiation exposure in low-dose multislice computed tomography of the heart and comparison with a calculation program. Eur Radiol. 2006; 16:1841–6.
Article
8. Gosling O, Loader R, Venables P, Roobottom C, Rowles N, Bellenger N, et al. A comparison of radiation doses between state-of-the-art multislice CT coronary angiography with iterative reconstruction, multislice CT coronary angiography with standard filtered back-projection and invasive diagnostic coronary angiography. Heart. 2010; 96:922–6.
Article
9. Beltrame JF, Crea F, Kaski JC, Ogawa H, Ong P, Sechtem U, et al. International standardization of diagnostic criteria for vasospastic angina. Eur Heart J. 2017; 38:2565–8.
Article
10. JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (Coronary Spastic Angina) (JCS 2013). Circ J. 2014; 78:2779–801.
11. Kang KM, Choi SI, Chun EJ, Kim JA, Youn TJ, Choi DJ. Coronary vasospastic angina: assessment by multidetector CT coronary angiography. Korean J Radiol. 2012; 13:27–33.
Article
12. Jin C, Kim MH, Kang EJ, Cho YR, Park TH, Lee KN, et al. Assessing vessel tone during coronary artery spasm by dual-acquisition multidetector computed tomography angiography. Cardiology. 2018; 139:25–32.
Article
13. Kang EJ, Kim MH, De Jin C, Seo J, Kim DW, Yoon SK, et al. Noninvasive detection of coronary vasospastic angina using a double-acquisition coronary CT angiography protocol in the presence and absence of an intravenous nitrate: a pilot study. Eur Radiol. 2017; 27:1136–47.
Article
14. Coles DR, Smail MA, Negus IS, Wilde P, Oberhoff M, Karsch KR, et al. Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol. 2006; 47:1840–5.
Article
15. Dill T, Deetjen A, Ekinci O, Mollmann S, Conradi G, Kluge A, et al. Radiation dose exposure in multislice computed tomography of the coronaries in comparison with conventional coronary angiography. Int J Cardiol. 2008; 124:307–11.
Article
16. Halliburton SS, Abbara S, Chen MY, Gentry R, Mahesh M, Raff GL, et al. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr. 2011; 5:198–224.
Article
17. Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009; 301:500–7.
Article
18. Betsou S, Efstathopoulos EP, Katritsis D, Faulkner K, Panayiotakis G. Patient radiation doses during cardiac catheterization procedures. Br J Radiol. 1998; 71:634–9.
Article
19. Khoramian D, Sistani S. Estimation and comparison of the radiation effective dose during coronary computed tomography angiography examinations on single-source 64-MDCT and dual-source 128-MDCT. J Radiol Prot. 2017; 37:826–36.
Article
20. Chen MY, Shanbhag SM, Arai AE. Submillisievert median radiation dose for coronary angiography with a second-generation 320-detector row CT scanner in 107 consecutive patients. Radiology. 2013; 267:76–85.
Article
21. Pantos I, Patatoukas G, Katritsis DG, Efstathopoulos E. Patient radiation doses in interventional cardiology procedures. Curr Cardiol Rev. 2009; 5:1–11.
Article
22. Stratis AI, Anthopoulos PL, Gavaliatsis IP, Ifantis GP, Salahas AI, Antonellis IP, et al. Patient dose in cardiac radiology. Hellenic J Cardiol. 2009; 50:17–25.
23. Loomba RS, Rios R, Buelow M, Eagam M, Aggarwal S, Arora RR. Comparison of contrast volume, radiation dose, fluoroscopy time, and procedure time in previously published studies of rotational versus conventional coronary angiography. Am J Cardiol. 2015; 116:43–9.
Article
24. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007; 116:1290–305.
Article
Full Text Links
  • KMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr