Korean J Gastroenterol.  2021 Feb;77(2):64-70. 10.4166/kjg.2021.018.

Diagnosis of Dysphagia: High Resolution Manometry & EndoFLIP

Affiliations
  • 1Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Abstract

Esophageal motility disorders were re-defined when high-resolution manometry was employed to better understand their pathogenesis. Newly developed parameters including integrated relaxation pressure (IRP), distal contractile integral, and distal latency showed better diagnostic yield compared with previously used conventional parameters. Therefore, Chicago classification was formulated, and its diagnostic cascade begins by assessing the IRP value. However, IRP showed limitation due to its inconsistency, and other studies have tried to overcome this. Recent studies showed that provocative tests, supplementing the conventional esophageal manometry protocol, have improved the diagnostic yield of the esophageal motility disorders. Therefore, position change from supine to upright, solid or semi-solid swallowing, multiple rapid swallows, and the rapid drink challenge were newly added to the manometry protocol in the revised Chicago classification version 4.0. Impedance planimetry enables measurement of bag cross-sectional area at various locations. The functional lumen imaging probe (FLIP) has been applied to assess luminal distensibility. This probe can also measure pressure, serial cross-sectional areas, and tension-strain relationship. The esophagogastric junction’s distensibility is decreased in achalasia. Therefore, EndoFLIP can be used to assess contractility and distensibility of the esophagus in the patients with achalasia, including repetitive antegrade or retrograde contractions. EndoFLIP can detect achalasia patients with relatively low IRP, which was difficult to diagnose using the current high-resolution manometry. EndoFLIP also provides information on the contractile activity and distensibility of the esophageal body in patients with achalasia. The use of provocative tests, newly added in Chicago classification 4.0 version, and EndoFLIP can expand understanding of esophageal motility disorders.

Keyword

Esophageal motility disorder; Esophageal achalasia; Manometry; EndoFLIP

Figure

  • Fig. 1 A case of opioid-induced esophageal dysmotility. A 48-year-old male attended the clinic with complaints of persistent dysphagia, noting that symptoms onset approximately 3 year prior. His upper endoscopy with esophageal biopsy produced non-specific findings. (A) His initial esophageal manometry showed a median integrated relaxation pressure (IRP) of 21 mmHg and a mean distal contractile integral (DCI) of 6,269 mmHg․s․cm. Four out of 10 swallows showed a DCI of more than 8,000 mmHg․s․cm. Based on the manometry findings, an initial suspected diagnosis of hypercontractile esophagus, including jackhammer esophagus, was given. However, the patient indicated that he had been using a 5 ug buprenorphine patch for 3 years to treat chronic back pain. Therefore, opioid-induced esophageal dysmotility disorder was presumed, and halting all opioid medication was advised. (B) His dysphagia disappeared after stopping the opioid medication. His 3-week opioid cessation follow-up manometry showed a median IRP of 17 mmHg and a mean DCI of 4,988 mmHg․s․cm. Just one in 10 swallows showed more than 8,000 mmHg․s․cm, and manometry findings were within normal finding.


Reference

1. Kahrilas PJ, Ghosh SK, Pandolfino JE. 2008; Esophageal motility disorders in terms of pressure topography: the Chicago Classification. J Clin Gastroenterol. 42:627–635. DOI: 10.1097/MCG.0b013e31815ea291. PMID: 18364587. PMCID: PMC2895002.
2. Clouse RE, Staiano A, Alrakawi A, Haroian L. 2000; Application of topographical methods to clinical esophageal manometry. Am J Gastroenterol. 95:2720–2730. DOI: 10.1111/j.1572-0241.2000.03178.x. PMID: 11051340.
Article
3. Pandolfino JE, Ghosh SK, Rice J, Clarke JO, Kwiatek MA, Kahrilas PJ. 2008; Classifying esophageal motility by pressure topography characteristics: a study of 400 patients and 75 controls. Am J Gastroenterol. 103:27–37. DOI: 10.1111/j.1572-0241.2007.01532.x. PMID: 17900331.
Article
4. Kahrilas PJ, Bredenoord AJ, Fox M, et al. 2015; The Chicago Classification of esophageal motility disorders, v3.0. Neurogastroenterol Motil. 27:160–174. DOI: 10.1111/nmo.12477. PMID: 25469569. PMCID: PMC4308501.
Article
5. Yadlapati R, Kahrilas PJ, Fox MR, et al. 2021; Esophageal motility disorders on high-resolution manometry: Chicago classification version 4.0©. Neurogastroenterol Motil. 33:e14058. DOI: 10.1111/nmo.14058. PMID: 33373111.
6. Donnan EN, Pandolfino JE. 2020; EndoFLIP in the esophagus: assessing sphincter function, wall stiffness, and motility to guide treatment. Gastroenterol Clin North Am. 49:427–435. DOI: 10.1016/j.gtc.2020.04.002. PMID: 32718562. PMCID: PMC7387752.
7. Acharya S, Halder S, Carlson DA, et al. 2021; Assessment of esophageal body peristaltic work using functional lumen imaging probe panometry. Am J Physiol Gastrointest Liver Physiol. 320:G217–G226. DOI: 10.1152/ajpgi.00324.2020. PMID: 33174457.
Article
8. Hirano I, Pandolfino JE, Boeckxstaens GE. 2017; Functional lumen imaging probe for the management of esophageal disorders: expert review from the clinical practice updates Committee of the AGA Institute. Clin Gastroenterol Hepatol. 15:325–334. DOI: 10.1016/j.cgh.2016.10.022. PMID: 28212976. PMCID: PMC5757507.
Article
9. Fox MR, Bredenoord AJ. 2008; Oesophageal high-resolution manometry: moving from research into clinical practice. Gut. 57:405–423. DOI: 10.1136/gut.2007.127993. PMID: 17895358.
Article
10. Ghosh SK, Pandolfino JE, Rice J, Clarke JO, Kwiatek M, Kahrilas PJ. 2007; Impaired deglutitive EGJ relaxation in clinical esophageal manometry: a quantitative analysis of 400 patients and 75 controls. Am J Physiol Gastrointest Liver Physiol. 293:G878–G885. DOI: 10.1152/ajpgi.00252.2007. PMID: 17690172.
Article
11. Pandolfino JE, Kwiatek MA, Nealis T, Bulsiewicz W, Post J, Kahrilas PJ. 2008; Achalasia: a new clinically relevant classification by high-resolution manometry. Gastroenterology. 135:1526–1533. DOI: 10.1053/j.gastro.2008.07.022. PMID: 18722376. PMCID: PMC2894987.
Article
12. Ghoshal UC, Rangan M. 2011; A review of factors predicting outcome of pneumatic dilation in patients with achalasia cardia. J Neurogastroenterol Motil. 17:9–13. DOI: 10.5056/jnm.2011.17.1.9. PMID: 21369487. PMCID: PMC3042226.
Article
13. Jung HK, Hong SJ, Lee OY, et al. 2020; 2019 Seoul consensus on esophageal achalasia guidelines. J Neurogastroenterol Motil. 26:180–203. DOI: 10.5056/jnm20014. PMID: 32235027. PMCID: PMC7176504.
Article
14. Benjamin SB, Gerhardt DC, Castell DO. 1979; High amplitude, peristaltic esophageal contractions associated with chest pain and/or dysphagia. Gastroenterology. 77:478–483. DOI: 10.1016/0016-5085(79)90008-8. PMID: 456842.
Article
15. Drane WE, Johnson DA, Hagan DP, Cattau EL Jr. 1987; "Nutcracker" esophagus: diagnosis with radionuclide esophageal scintigraphy versus manometry. Radiology. 163:33–37. DOI: 10.1148/radiology.163.1.3823454. PMID: 3823454.
Article
16. Jung KW, Jung HY, Yoon IJ, et al. 2010; Basal and residual lower esophageal pressures increase in old age in classic achalasia, but not vigorous achalasia. J Gastroenterol Hepatol. 25:1452–1455. DOI: 10.1111/j.1440-1746.2010.06298.x. PMID: 20659237.
Article
17. Jung KW, Jung HY, Myung SJ, et al. 2015; The effect of age on the key parameters in the Chicago classification: a study using high-resolution esophageal manometry in asymptomatic normal individuals. Neurogastroenterol Motil. 27:246–257. DOI: 10.1111/nmo.12482. PMID: 25521290.
Article
18. Agrawal A, Hila A, Tutuian R, Mainie I, Castell DO. 2006; Clinical relevance of the nutcracker esophagus: suggested revision of criteria for diagnosis. J Clin Gastroenterol. 40:504–509. DOI: 10.1097/00004836-200607000-00008. PMID: 16825932.
Article
19. Jung KW, Jung HY, Yoon IJ, et al. 2010; New diagnostic criteria for nutcracker esophagus using conventional water-perfused manometry: a comparison between nutcracker esophagus with and without gastroesophageal reflux disease. J Gastroenterol Hepatol. 25:1239–1243. DOI: 10.1111/j.1440-1746.2010.06301.x. PMID: 20594250.
Article
20. Roman S, Pandolfino JE, Chen J, Boris L, Luger D, Kahrilas PJ. 2012; Phenotypes and clinical context of hypercontractility in high-resolution esophageal pressure topography (EPT). Am J Gastroenterol. 107:37–45. DOI: 10.1038/ajg.2011.313. PMID: 21931377. PMCID: PMC3641840.
Article
21. Xiao Y, Carlson DA, Lin Z, Alhalel N, Pandolfino JE. 2018; Jackhammer esophagus: assessing the balance between prepeak and postpeak contractile integral. Neurogastroenterol Motil. 30:e13262. DOI: 10.1111/nmo.13262. PMID: 29193439. PMCID: PMC6317707.
Article
22. Xiao Y, Carlson DA, Lin Z, Pandolfino JE. 2020; Chaotic peak propagation in patients with Jackhammer esophagus. Neurogastroenterol Motil. 32:e13725. DOI: 10.1111/nmo.13725. PMID: 31532046. PMCID: PMC7082896.
Article
23. de Bortoli N, Gyawali PC, Roman S, et al. 2021; Hypercontractile esophagus from pathophysiology to management: proceedings of the pisa symposium. Am J Gastroenterol. 116:263–273. DOI: 10.14309/ajg.0000000000001061. PMID: 33273259.
Article
24. Pandolfino JE, Roman S, Carlson D, et al. 2011; Distal esophageal spasm in high-resolution esophageal pressure topography: defining clinical phenotypes. Gastroenterology. 141:469–475. DOI: 10.1053/j.gastro.2011.04.058. PMID: 21679709. PMCID: PMC3626105.
Article
25. Lin Z, Kahrilas PJ, Roman S, Boris L, Carlson D, Pandolfino JE. 2012; Refining the criterion for an abnormal integrated relaxation pressure in esophageal pressure topography based on the pattern of esophageal contractility using a classification and regression tree model. Neurogastroenterol Motil. 24:e356–e363. DOI: 10.1111/j.1365-2982.2012.01952.x. PMID: 22716041. PMCID: PMC3616504.
Article
26. Herregods TV, Roman S, Kahrilas PJ, Smout AJ, Bredenoord AJ. 2015; Normative values in esophageal high-resolution manometry. Neurogastroenterol Motil. 27:175–187. DOI: 10.1111/nmo.12500. PMID: 25545201.
Article
27. Rengarajan A, Rogers BD, Wong Z, et al. 2020; Oct. 31. High-resolution manometry thresholds and motor patterns among asymptomatic individuals. Clin Gastroenterol Hepatol. [Epub ahead of print]. DOI: 10.1016/j.cgh.2020.10.052. PMID: 33144149.
Article
28. Triggs JR, Carlson DA, Beveridge C, et al. 2019; Upright integrated relaxation pressure facilitates characterization of esophagogastric junction outflow obstruction. Clin Gastroenterol Hepatol. 17:2218–2226.e2. DOI: 10.1016/j.cgh.2019.01.024. PMID: 30708108. PMCID: PMC6663640.
29. Shaker A, Stoikes N, Drapekin J, Kushnir V, Brunt LM, Gyawali CP. 2013; Multiple rapid swallow responses during esophageal high-resolution manometry reflect esophageal body peristaltic reserve. Am J Gastroenterol. 108:1706–1712. DOI: 10.1038/ajg.2013.289. PMID: 24019081. PMCID: PMC4091619.
Article
30. Carlson DA, Roman S. 2018; Esophageal provocation tests: are they useful to improve diagnostic yield of high resolution manometry? Neurogastroenterol Motil. 30:e13321. DOI: 10.1111/nmo.13321. PMID: 29603510.
Article
31. Min YW, Shin I, Son HJ, Rhee PL. 2015; Multiple rapid swallow maneuver enhances the clinical utility of high-resolution manometry in patients showing ineffective esophageal motility. Medicine (Baltimore). 94:e1669. DOI: 10.1097/MD.0000000000001669. PMID: 26448010. PMCID: PMC4616734.
Article
32. Blonski W, Hila A, Jain V, Freeman J, Vela M, Castell DO. 2007; Impedance manometry with viscous test solution increases detection of esophageal function defects compared to liquid swallows. Scand J Gastroenterol. 42:917–922. DOI: 10.1080/00365520701245702. PMID: 17613920.
Article
33. Wong U, Person EB, Castell DO, von Rosenvinge E, Raufman JP, Xie G. 2018; Improving high-resolution impedance manometry using novel viscous and super-viscous substrates in the supine and upright positions: a pilot study. J Neurogastroenterol Motil. 24:570–576. DOI: 10.5056/jnm18010. PMID: 30122029. PMCID: PMC6175560.
Article
34. Araujo IK, Roman S, Napoléon M, Mion F. 2020; Diagnostic yield of adding solid food swallows during high-resolution manometry in esophageal motility disorders. Neurogastroenterol Motil. e14060. DOI: 10.1111/nmo.14060. PMID: 33314459.
Article
35. Ang D, Hollenstein M, Misselwitz B, et al. 2017; Rapid drink challenge in high-resolution manometry: an adjunctive test for detection of esophageal motility disorders. Neurogastroenterol Motil. 29(1):DOI: 10.1111/nmo.12902. PMID: 27420913.
Article
36. Marin I, Caballero N, Guarner-Argente C, Serra J. 2018; Rapid drink challenge test for the clinical evaluation of patients with Achalasia. Neurogastroenterol Motil. 30:e13438. DOI: 10.1111/nmo.13438. PMID: 30101425.
Article
37. Hsing LC, Jung KW. 2020; Role of the rapid drink challenge test in esophageal motility disorder diagnosis. J Neurogastroenterol Motil. 26:167–168. DOI: 10.5056/jnm20035. PMID: 32235024. PMCID: PMC7176506.
Article
38. Krause AJ, Su H, Triggs JR, et al. 2020 ; Oct. 11. Multiple rapid swallows and rapid drink challenge in patients with esophagogastric junction outflow obstruction on high-resolution manometry. Neurogastroenterol Motil. [Epub ahead of print]. DOI: 10.1111/nmo.14000. PMID: 33043557. PMCID: PMC7902305.
Article
39. Wood JD, Galligan JJ. 2004; Function of opioids in the enteric nervous system. Neurogastroenterol Motil. 16 Suppl 2:17–28. DOI: 10.1111/j.1743-3150.2004.00554.x. PMID: 15357848.
Article
40. Kraichely RE, Arora AS, Murray JA. 2010; Opiate-induced oesophageal dysmotility. Aliment Pharmacol Ther. 31:601–606. DOI: 10.1111/j.1365-2036.2009.04212.x. PMID: 20003176. PMCID: PMC3092396.
Article
41. Ratuapli SK, Crowell MD, DiBaise JK, et al. 2015; Opioid-induced esophageal dysfunction (OIED) in patients on chronic opioids. Am J Gastroenterol. 110:979–984. DOI: 10.1038/ajg.2015.154. PMID: 26032150.
Article
42. Ravi K, Murray JA, Geno DM, Katzka DA. 2016; Achalasia and chronic opiate use: innocent bystanders or associated conditions? Dis Esophagus. 29:15–21. DOI: 10.1111/dote.12291. PMID: 25604060.
Article
43. Jung KW, Kraichely RE, Arora AS, Katzka DA, Romero Y, Murray JA. 2011; Manometric characteristics of opioid esophageal dysmotility disorder by high-resolution manometry. Gastroenterology. 140:S–229. DOI: 10.1016/S0016-5085(11)60925-6.
Article
44. Kim GH, Jung KW. 2019; Emerging issues in esophageal motility diseases. Korean J Gastroenterol. 73:322–326. DOI: 10.4166/kjg.2019.73.6.322. PMID: 31234622.
Article
45. Jung KW, Myung SJ, Jung HY. 2012; A patient with dysphagia associated with opioid medication. J Neurogastroenterol Motil. 18:220–221. DOI: 10.5056/jnm.2012.18.2.220. PMID: 22523734. PMCID: PMC3325310.
Article
46. Kim GH, Jung KW. 2019; The role of opioids and alcohol in the development of achalasia type III and esophagogastric junction outflow obstruction. J Neurogastroenterol Motil. 25:177–178. DOI: 10.5056/jnm19047. PMID: 30982237. PMCID: PMC6474699.
Article
47. Kim GH, Jung KW, Jung HY, et al. 2019; Superior clinical outcomes of peroral endoscopic myotomy compared with balloon dilation in all achalasia subtypes. J Gastroenterol Hepatol. 34:659–665. DOI: 10.1111/jgh.14616. PMID: 30695124.
Article
48. Murray JA, Ledlow A, Launspach J, Evans D, Loveday M, Conklin JL. 1995; The effects of recombinant human hemoglobin on esophageal motor functions in humans. Gastroenterology. 109:1241–1248. DOI: 10.1016/0016-5085(95)90584-7. PMID: 7557091.
49. Ghosh SK, Janiak P, Fox M, Schwizer W, Hebbard GS, Brasseur JG. 2008; Physiology of the oesophageal transition zone in the presence of chronic bolus retention: studies using concurrent high resolution manometry and digital fluoroscopy. Neurogastroenterol Motil. 20:750–759. DOI: 10.1111/j.1365-2982.2008.01129.x. PMID: 18422907.
Article
50. Pohl D, Ribolsi M, Savarino E, et al. 2008; Characteristics of the esophageal low-pressure zone in healthy volunteers and patients with esophageal symptoms: assessment by high-resolution manometry. Am J Gastroenterol. 103:2544–2549. DOI: 10.1111/j.1572-0241.2008.02062.x. PMID: 18684179.
Article
51. Ghosh SK, Pandolfino JE, Kwiatek MA, Kahrilas PJ. 2008; Oesophageal peristaltic transition zone defects: real but few and far between. Neurogastroenterol Motil. 20:1283–1290. DOI: 10.1111/j.1365-2982.2008.01169.x. PMID: 18662328. PMCID: PMC2886597.
Article
52. Jung KW, Jung HY, Romero Y, Katzka D, Murray JA. 2011; Impact of display alternatives in the determination of bolus handling: a study using high-resolution manometry with impedance. Am J Gastroenterol. 106:1854–1857. DOI: 10.1038/ajg.2011.233. PMID: 21979209.
Article
53. Rommel N, Van Oudenhove L, Tack J, Omari TI. 2014; Automated impedance manometry analysis as a method to assess esophageal function. Neurogastroenterol Motil. 26:636–645. DOI: 10.1111/nmo.12308. PMID: 24447538.
Article
54. Singendonk MJ, Lin Z, Scheerens C, et al. 2019; High-resolution impedance manometry parameters in the evaluation of esophageal function of non-obstructive dysphagia patients. Neurogastroenterol Motil. 31:e13505. DOI: 10.1111/nmo.13505. PMID: 30426609.
Article
55. Lin Z, Nicodème F, Lin CY, et al. 2014; Parameters for quantifying bolus retention with high-resolution impedance manometry. Neurogastroenterol Motil. 26:929–936. DOI: 10.1111/nmo.12346. PMID: 24750336. PMCID: PMC4120956.
Article
56. Carlson DA, Beveridge CA, Lin Z, et al. 2018; Improved assessment of bolus clearance in patients with achalasia using high-resolution impedance manometry. Clin Gastroenterol Hepatol. 16:672–680.e1. DOI: 10.1016/j.cgh.2017.11.019. PMID: 29155168. PMCID: PMC5911237.
Article
57. Gong EJ, Choi K, Jung KW, et al. 2020; New parameter for quantifying bolus transit with high-resolution impedance manometry: a comparison with simultaneous esophagogram. Neurogastroenterol Motil. 32:e13847. DOI: 10.1111/nmo.13847. PMID: 32299145.
Article
58. Yadlapati R, Pandolfino JE, Fox MR, Bredenoord AJ, Kahrilas PJ. 2021; What is new in Chicago Classification version 4.0? Neurogastroenterol Motil. 33:e14053. DOI: 10.1111/nmo.14053. PMID: 33340190.
Article
59. Rao SS, Gregersen H, Hayek B, Summers RW, Christensen J. 1996; Unexplained chest pain: the hypersensitive, hyperreactive, and poorly compliant esophagus. Ann Intern Med. 124:950–958. DOI: 10.7326/0003-4819-124-11-199606010-00002. PMID: 8624062.
Article
60. Gregersen H, Vinter-Jensen L, Juhl CO, Dajani EZ. 1996; Impedance planimetric characterization of the distal oesophagus in the Goettingen minipig. J Biomech. 29:63–68. DOI: 10.1016/0021-9290(95)00016-X. PMID: 8839018.
Article
61. Kwiatek MA, Pandolfino JE, Hirano I, Kahrilas PJ. 2010; Esophagogastric junction distensibility assessed with an endoscopic functional luminal imaging probe (EndoFLIP). Gastrointest Endosc. 72:272–278. DOI: 10.1016/j.gie.2010.01.069. PMID: 20541755. PMCID: PMC3019759.
Article
62. Savarino E, di Pietro M, Bredenoord AJ, et al. 2020; Use of the functional lumen imaging probe in clinical esophagology. Am J Gastroenterol. 115:1786–1796. DOI: 10.14309/ajg.0000000000000773. PMID: 33156096.
Article
63. Carlson DA, Lin Z, Kahrilas PJ, et al. 2015; The functional lumen imaging probe detects esophageal contractility not observed with manometry in patients with achalasia. Gastroenterology. 149:1742–1751. DOI: 10.1053/j.gastro.2015.08.005. PMID: 26278501. PMCID: PMC4663149.
64. Carlson DA, Lin Z, Rogers MC, Lin CY, Kahrilas PJ, Pandolfino JE. 2015; Utilizing functional lumen imaging probe topography to evaluate esophageal contractility during volumetric distention: a pilot study. Neurogastroenterol Motil. 27:981–989. DOI: 10.1111/nmo.12572. PMID: 25898916. PMCID: PMC4478241.
Article
65. Teitelbaum EN, Soper NJ, Pandolfino JE, et al. 2015; Esophagogastric junction distensibility measurements during Heller myotomy and POEM for achalasia predict postoperative symptomatic outcomes. Surg Endosc. 29:522–528. DOI: 10.1007/s00464-014-3733-1. PMID: 25055891. PMCID: PMC4343529.
Article
66. Ponds FA, Bredenoord AJ, Kessing BF, Smout AJ. 2017; Esophagogastric junction distensibility identifies achalasia subgroup with manometrically normal esophagogastric junction relaxation. Neurogastroenterol Motil. 29(1):DOI: 10.1111/nmo.12908. PMID: 27458129.
Article
67. Carlson DA, Kahrilas PJ, Lin Z, et al. 2016; Evaluation of esophageal motility utilizing the functional lumen imaging probe. Am J Gastroenterol. 111:1726–1735. DOI: 10.1038/ajg.2016.454. PMID: 27725650. PMCID: PMC5224528.
Article
Full Text Links
  • KJG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr