Clin Exp Otorhinolaryngol.  2020 May;13(2):85-86. 10.21053/ceo.2020.00031.

Future Directions of Optical Coherence Tomography in Otology: A Morphological and Functional Approach

Affiliations
  • 1Department of Otolaryngology and Head-Neck Surgery, Harvard Medical School, Boston, MA, USA
  • 2Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
  • 3Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea


Reference

1. Oh SJ, Lee IW, Wang SG, Kong SK, Kim HK, Goh EK. Extratympanic observation of middle and inner ear structures in rodents using optical coherence tomography. Clin Exp Otorhinolaryngol. 2020; 13(2):106–12.
Article
2. Ramier A, Cheng JT, Ravicz ME, Rosowski JJ, Yun SH. Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography. Biomed Opt Express. 2018; Oct. 9(11):5489–502.
Article
3. Kim J, Xia A, Grillet N, Applegate BE, Oghalai JS. Osmotic stabilization prevents cochlear synaptopathy after blast trauma. Proc Natl Acad Sci U S A. 2018; May. 115(21):E4853–60.
Article
4. Cooper NP, Vavakou A, van der Heijden M. Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea. Nat Commun. 2018; Aug. 9(1):3054.
Article
5. Schuon R, Mrevlje B, Vollmar B, Lenarz T, Paasche G. Intraluminal three-dimensional optical coherence tomography: a tool for imaging of the Eustachian tube. J Laryngol Otol. 2019; Feb. 133(2):87–94.
6. Won J, Monroy GL, Huang PC, Hill MC, Novak MA, Porter RG, et al. Assessing the effect of middle ear effusions on wideband acoustic immittance using optical coherence tomography. Ear Hear. 2019; Oct. 18. [Epub]. https://doi.org/10.1097/AUD.0000000000000796.
Article
7. Pande P, Shelton RL, Monroy GL, Nolan RM, Boppart SA. A Mosaicking approach for in vivo thickness mapping of the human tympanic membrane using low coherence interferometry. J Assoc Res Otolaryngol. 2016; Oct. 17(5):403–16.
Article
8. Lee J, Wijesinghe RE, Jeon D, Kim P, Choung YH, Jang JH, et al. Clinical utility of intraoperative tympanomastoidectomy assessment using a surgical microscope integrated with an optical coherence tomography. Sci Rep. 2018; Nov. 8(1):17432.
Article
9. Kim W, Kim S, Huang S, Oghalai JS, Applegate BE. Picometer scale vibrometry in the human middle ear using a surgical microscope based optical coherence tomography and vibrometry system. Biomed Opt Express. 2019; Aug. 10(9):4395–410.
Article
10. Iyer JS, Batts SA, Chu KK, Sahin MI, Leung HM, Tearney GJ, et al. Micro-optical coherence tomography of the mammalian cochlea. Sci Rep. 2016; Sep. 6:33288.
Article
11. MacDougall D, Morrison L, Morrison C, Morris DP, Bance M, Adamson RB. Optical coherence tomography doppler vibrometry measurement of stapes vibration in patients with stapes fixation and normal controls. Otol Neurotol. 2019; 40(4):e349–55.
Article
Full Text Links
  • CEO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr