Ann Rehabil Med.  2017 Oct;41(5):828-835. 10.5535/arm.2017.41.5.828.

Effect of Extracorporeal Shockwave Therapy Versus Intra-articular Injections of Hyaluronic Acid for the Treatment of Knee Osteoarthritis

Affiliations
  • 1Department of Rehabilitation Medicine, Gwangju Veterans Hospital, Gwangju, Korea. standupmd@hanmail.net

Abstract


OBJECTIVE
To evaluate and compare the effects and outcomes of extracorporeal shock wave therapy (ESWT) and intra-articular injections of hyaluronic acid (HA) in patients with knee osteoarthritis (OA).
METHODS
Of the 78 patients recruited for the study, 61 patients met the inclusion criteria. The enrolled patients were randomly divided into two groups: the ESWT group and the HA group. The ESWT group underwent 3 sessions of 1,000 shockwave pulses performed on the affected knee with the dosage adjusted to 0.05 mJ/mm² energy. The HA group was administered intra-articular HA once a week for 3 weeks with a 1-week interval between each treatment. The results were measured with the visual analogue scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Lequesne index, 40-m fast-paced walk test, and stair-climb test (SCT). A baseline for each test was measured before treatment and then the effects of the treatments were measured by each test at 1 and 3 months after treatment.
RESULTS
In both groups, the scores of the VAS, WOMAC, Lequesne index, 40-m fast-paced walk test, and SCT were significantly improved in a time-dependent manner (p<0.01). There were no statistically significant differences measured at 1 and 3 months after treatment between the two groups (p>0.05).
CONCLUSION
The ESWT can be an alternative treatment to reduce pain and improve physical functions in patients with knee OA.

Keyword

Knee osteoarthritis; High-energy shock waves; Hyaluronic acid

MeSH Terms

High-Energy Shock Waves
Humans
Hyaluronic Acid*
Injections, Intra-Articular*
Knee*
Ontario
Osteoarthritis
Osteoarthritis, Knee*
Shock
Hyaluronic Acid

Figure

  • Fig. 1 A flow diagram, showing the treatment process and assessment. ESWT, extracorporeal shock wave therapy; HA, hyaluronic acid.

  • Fig. 2 The visual analogue scale (VAS) score (A), Western Ontario and McMaster Universities arthritis index (WOMAC) score (B), Lequesne index score (C), 40-m fast-paced walk test score (D), and stair climb test (SCT) score (E) at baseline and 1- and 3-month follow-ups after treatment in the ESWT group and the HA group. These figures show significant improvement for both groups in all treatment outcomes for the entire period (p<0.01 for time effect, p>0.05 for group-time interaction).


Cited by  2 articles

Comment on “Effect of Extracorporeal Shockwave Therapy Versus Intra-articular Injections of Hyaluronic Acid for the Treatment of Knee Osteoarthritis”
Valter Santilli, Federica Alviti, Marco Paoloni, Massimiliano Mangone, Andrea Bernetti
Ann Rehabil Med. 2018;42(2):372-373.    doi: 10.5535/arm.2018.42.2.372.

Efficacy and Safety of Intra-articular Injections of Hyaluronic Acid Combined With Polydeoxyribonucleotide in the Treatment of Knee Osteoarthritis
Seihee Yoon, Jung Joong Kang, Jungin Kim, Seunghun Park, Jong Moon Kim
Ann Rehabil Med. 2019;43(2):204-214.    doi: 10.5535/arm.2019.43.2.204.


Reference

1. Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther. 2009; 11:227. PMID: 19519925.
Article
2. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage. 2008; 16:137–162. PMID: 18279766.
Article
3. Roberts E, Delgado Nunes V, Buckner S, Latchem S, Constanti M, Miller P, et al. Paracetamol: not as safe as we thought? A systematic literature review of observational studies. Ann Rheum Dis. 2016; 75:552–559. PMID: 25732175.
Article
4. Nguyen C, Lefevre-Colau MM, Poiraudeau S, Rannou F. Evidence and recommendations for use of intra-articular injections for knee osteoarthritis. Ann Phys Rehabil Med. 2016; 59:184–189. PMID: 27103055.
Article
5. Sofat N, Ejindu V, Kiely P. What makes osteoarthritis painful? The evidence for local and central pain processing. Rheumatology (Oxford). 2011; 50:2157–2165. PMID: 21954151.
Article
6. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res. 2012; 7:11. PMID: 22433113.
Article
7. Revenaugh MS. Extracorporeal shock wave therapy for treatment of osteoarthritis in the horse: clinical applications. Vet Clin North Am Equine Pract. 2005; 21:609–625. viPMID: 16297724.
Article
8. Frisbie DD, Kawcak CE, McIlwraith CW. Evaluation of the effect of extracorporeal shock wave treatment on experimentally induced osteoarthritis in middle carpal joints of horses. Am J Vet Res. 2009; 70:449–454. PMID: 19335099.
Article
9. Zhao Z, Ji H, Jing R, Liu C, Wang M, Zhai L, et al. Extracorporeal shock-wave therapy reduces progression of knee osteoarthritis in rabbits by reducing nitric oxide level and chondrocyte apoptosis. Arch Orthop Trauma Surg. 2012; 132:1547–1553. PMID: 22825641.
Article
10. Ochiai N, Ohtori S, Sasho T, Nakagawa K, Takahashi K, Takahashi N, et al. Extracorporeal shock wave therapy improves motor dysfunction and pain originating from knee osteoarthritis in rats. Osteoarthritis Cartilage. 2007; 15:1093–1096. PMID: 17466542.
Article
11. Wang CJ, Weng LH, Ko JY, Wang JW, Chen JM, Sun YC, et al. Extracorporeal shockwave shows regression of osteoarthritis of the knee in rats. J Surg Res. 2011; 171:601–608. PMID: 20851422.
Article
12. Wang CJ, Sun YC, Wong T, Hsu SL, Chou WY, Chang HW. Extracorporeal shockwave therapy shows time-dependent chondroprotective effects in osteoarthritis of the knee in rats. J Surg Res. 2012; 178:196–205. PMID: 22608545.
Article
13. Zhao Z, Jing R, Shi Z, Zhao B, Ai Q, Xing G. Efficacy of extracorporeal shockwave therapy for knee osteoarthritis: a randomized controlled trial. J Surg Res. 2013; 185:661–666. PMID: 23953895.
Article
14. Kim JH, Kim JY, Choi CM, Lee JK, Kee HS, Jung KI, et al. The dose-related effects of extracorporeal shock wave therapy for knee osteoarthritis. Ann Rehabil Med. 2015; 39:616–623. PMID: 26361599.
Article
15. Cho SJ, Yang JR, Yang HS, Yang HE. Effects of extracorporeal shockwave therapy in chronic stroke patients with knee osteoarthritis: a pilot study. Ann Rehabil Med. 2016; 40:862–870. PMID: 27847716.
Article
16. Elerian AE, Ewidea TA. Effect of shock wave therapy versus corticosteroid injection in management of knee osteoarthritis. Int J Physiother. 2016; 3:246–251.
Article
17. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986; 29:1039–1049. PMID: 3741515.
18. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957; 16:494–502. PMID: 13498604.
Article
19. Telikicherla M, Kamath SU. Accuracy of needle placement into the intra-articular space of the knee in osteoarthritis patients for viscosupplementation. J Clin Diagn Res. 2016; 10:RC15–RC17. PMID: 27042542.
20. Carlsson AM. Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain. 1983; 16:87–101. PMID: 6602967.
Article
21. Bellamy N, Campbell J, Stevens J, Pilch L, Stewart C, Mahmood Z. Validation study of a computerized version of the Western Ontario and McMaster Universities VA3.0 Osteoarthritis Index. J Rheumatol. 1997; 24:2413–2415. PMID: 9415651.
22. Lequesne MG, Mery C, Samson M, Gerard P. Indexes of severity for osteoarthritis of the hip and knee. Validation: value in comparison with other assessment tests. Scand J Rheumatol Suppl. 1987; 65:85–89. PMID: 3479839.
23. Wright AA, Cook CE, Baxter GD, Dockerty JD, Abbott JH. A comparison of 3 methodological approaches to defining major clinically important improvement of 4 performance measures in patients with hip osteoarthritis. J Orthop Sports Phys Ther. 2011; 41:319–327. PMID: 21335930.
Article
24. Kennedy DM, Stratford PW, Wessel J, Gollish JD, Penney D. Assessing stability and change of four performance measures: a longitudinal study evaluating outcome following total hip and knee arthroplasty. BMC Musculoskelet Disord. 2005; 6:3. PMID: 15679884.
Article
25. Maheu E, Rannou F, Reginster JY. Efficacy and safety of hyaluronic acid in the management of osteoarthritis: Evidence from real-life setting trials and surveys. Semin Arthritis Rheum. 2016; 45(4 Suppl):S28–S33. PMID: 26806183.
Article
26. Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). 2012; 64:465–474. PMID: 22563589.
Article
27. Wang CJ, Hsu SL, Weng LH, Sun YC, Wang FS. Extracorporeal shockwave therapy shows a number of treatment related chondroprotective effect in osteoarthritis of the knee in rats. BMC Musculoskelet Disord. 2013; 14:44. PMID: 23356403.
Article
28. Richette P, Chevalier X, Ea HK, Eymard F, Henrotin Y, Ornetti P, et al. Hyaluronan for knee osteoarthritis: an updated meta-analysis of trials with low risk of bias. RMD Open. 2015; 1:e000071. PMID: 26509069.
Article
29. Altman RD, Manjoo A, Fierlinger A, Niazi F, Nicholls M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: a systematic review. BMC Musculoskelet Disord. 2015; 16:321. PMID: 26503103.
Article
30. Petrella RJ, DiSilvestro MD, Hildebrand C. Effects of hyaluronate sodium on pain and physical functioning in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled clinical trial. Arch Intern Med. 2002; 162:292–298. PMID: 11822921.
31. Sun SF, Hsu CW, Hwang CW, Hsu PT, Wang JL, Tsai SL, et al. Hyaluronate improves pain, physical function and balance in the geriatric osteoarthritic knee: a 6-month follow-up study using clinical tests. Osteoarthritis Cartilage. 2006; 14:696–701. PMID: 16520067.
Article
32. Marks R. An investigation of the influence of age, clinical status, pain and position sense on stair walking in women with osteoarthrosis. Int J Rehabil Res. 1994; 17:151–158. PMID: 7960337.
Article
Full Text Links
  • ARM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr