Prog Med Phys.  2017 Dec;28(4):218-225. 10.14316/pmp.2017.28.4.218.

Evaluations and Comparisons of Body Surface Doses during Breast Cancer Treatment by Tomotherapy and LINAC Radiotherapy Devices

Affiliations
  • 1Department of Radiation Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
  • 2Department of Medical Physics, General Graduate School, Kyonggi University, Seoul, Korea. gdlee@kyonggi.ac.kr

Abstract

Effects on skin caused by the dose from linear accelerator (LINAC) opposing portal irradiation and TomoDirect 3-D modeling treatment according to the radiation devices and treatment methods were measured, and a comparative analysis was performed. Two groups of 10 patients each were created and measurements were carried out using an optically stimulated luminescence dosimeter. These patients were already receiving radiation treatment in the hospital. Using the SPSS statistical program, the minimum and maximum average standard deviations of the measured skin dose data were obtained. Two types of treatment method were selected as independent variables; the measured points and total average were the dependent variables. An independent sample T-test was used, and it was checked whether there was a significance probability between the two groups. The average of the measured results for the LINAC opposing portal radiation was 117.7 cGy and PDD 65.39% for the inner breast, 144.7 cGy and PDD 80.39% for the outer breast, 143.2 cGy and PDD 79.56% for the upper breast, 151.4 cGy and PDD 84.11% for the lower breast, 149.6 cGy and PDD 83.11% for the axilla, and 141.32 cGy and PDD 78.51% for the total average. In contrast, for TomoDirect 3-D conformal radiotherapy, the corresponding measurement values were 137.6 cGy and PDD 76.44%, 152.3 cGy and PDD 84.61%, 148.6 cGy and PDD 82.56%, 159.7 cGy and PDD 88.72%, and 148.6 cGy PDD 82.56%, respectively, and the total average was 149.36 cGy and PDD 82.98%. To determine if the difference between the total averages was statistically significant, the independent sample T-test of the SPSS statistical program was used, which indicated that the P-value was P=0.024, which was 0.05 lower than the significance level. Thus, it can be understood that the null hypothesis can be dismissed, and that there was a difference in the averages. In conclusion, even though the treatment dose was similar, there could be a difference in the dose entering the body surface from the radiation treatment plan; however, depending on the properties of the treatment devices, there is a difference in the dose affecting the body surface. Thus, the absorbed dose entering the body surface can be high. During breast cancer radiotherapy, radiation dermatitis occurs in almost all patients. Most patients have a difficult time while undergoing treatment, and therefore, when choosing a radiotherapy treatment method, minimizing radiation dermatitis is an important consideration.

Keyword

TomoDirect; LINAC; Breast cancer skin dose; OSL dosimetry

MeSH Terms

Axilla
Breast Neoplasms*
Breast*
Dermatitis
Humans
Luminescence
Methods
Particle Accelerators
Radiotherapy*
Radiotherapy, Conformal
Skin

Figure

  • Fig. 1 InLight OSL dosimetry system.

  • Fig. 2 Setup for calibration of OSL dosimeter — LINAC.

  • Fig. 3 Setup for calibration of OSL dosimeter — Tomotherapy.

  • Fig. 4 Locations of dose measurement where the OSL dosimeters were attached: ① Upper Breast, ② Inner Breast, ③ Lower Breast, ④ Outer Breast, and ⑤ Axilla.


Reference

1.National Cancer Registry Annual Report. Annual report of cancer statistics in Korea in 2014 Korea Central Cancer Registry Cancer Registration & Statistics Branch, Division of Cancer Registration & Surveillance, National Cancer Center, Korea. 2016.
2.Veronesi U., Salvadori B., Luini A, et al. Breast conservation is a safe method in patients with small cancer of the breast long-term results of three randomized trials on 1,973 patients. Eur J Cancer. 1995. 31A:1574–1579.
3.Clarke M., Collins R., Darby S, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials. Lancet. 2005. 366:2087–2106.
4.Kim JH., Byun SJ. Long-term results of breast conserving surgery and radiation therapy in early breast cancer. J Korean Soc Ther Radiol Oncol. 2009. 27:153–162.
5.Jung YS., Na KY., Kim KS, et al. Nation-wide Korean breast cancer data from 2008 using the breast cancer registration program. J Breast Cancer. 2011. 14:229–236.
Article
6.Ahn SH., Yoo KY. Chronological changes of clinical characteristics in 31115 new breast cancer patients among Koreans during 1996-2004. Breast Cancer Res Treat. 2006. 99:209–214.
Article
7.Kim JH., Kim OB., Kim YS. Breast conserving operation and radiation therapy in early breast cancer: interim analysis. J Korean Soc Ther Radiol Oncol. 2001. 19:27–33.
8.Salvo N., Barnes E., van Draanen J, et al. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature. Curr Oncol. 2010. 17(4):94–112.
Article
9.Lee SY., Kwon HC., Kim JS., Lee HK. An analysis of the incidence and related factors for radiation dermatitis in breast cancer patients who received radiation therapy. J Korean Soc Ther Radiol Oncol. 2010. 28:16–22.
Article
10.Hymes SR., Strom EA., Fife C. Radiation dermatitis: clinical presentation, pathophysiology, and treatment 2006. J Am Acad Dermatol. 2006. 54:28–46.
Article
11.Harper JL., Franklin LE., Jenrette JM., Aguero EG. Skin toxicity during breast irradiation: pathophysiology and management. South Med J. 2004. 97:989–993.
Article
12.Kraus-Tiefenbacher U., Sfintizky A., Welzel G, et al. Factors of influence on acute skin toxicity of breast cancer patients treated with standard three-dimensional conformal radiotherapy (3D-CRT) after breast conserving surgery (BCS). Radiat Oncol. 2012. 7:217.
Article
13.Rudat V., Nour A., Alaradi1 AA, et al. In vivo surface dose measurement using GafChromic film dosimetry in breast cancer radiotherapy: comparison of 7-field IMRT, tangential IMRT and tangential 3D-CRT. Radiat Oncol. 2014. 9:156.
Article
14.Pignol JP., Olivotto I., Rakovitch E, et al. A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol. 2008. 26:2085–2092.
Article
15.Im IC., Yu YS., Lee JS. Measurement of skin dose for rectal cancer patients in radiotherapy using optically stimulated luminescence detectors (OSLDs). J Radiat Protect. 2011. 2:36.
16.Jursinic PA. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med Phys. 2007. 34(12):4594–4604.
Article
17.Viamonte A., da Rosa LA., Buckey LA., Cherpak A., Cygler JE. Radiotherapy dosimetry using a commercial OSL system. Med Phys. 2008. 35(4):1261–1266.
Article
18.Charles PH., Crowe SB., Kairn T, et al. The effect of very small air gaps on small field dosimetry. Phys Med Biol. 2012. 57(21):6947–60.
Article
19.Lee BR., Lee SY., Yoon MG. Dosimetric comparison of radiation treatment techniques for breast cancer: 3D-CRT, IMRT and VMAT. J Radiol Sci Technol. 2013. 36:237–244.
Full Text Links
  • PMP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr