Korean J Ophthalmol.  2016 Aug;30(4):251-257. 10.3341/kjo.2016.30.4.251.

Evaluation of Anterior Segment Parameter Changes Using the Sirius after Uneventful Phacoemulsification

Affiliations
  • 1Department of Ophthalmology, Adıyaman University School of Medicine, Adiyaman, Turkey.
  • 2Department of Ophthalmology, Adıyaman Gozde Hospital, Adiyaman, Turkey. burbilgin@yahoo.com

Abstract

PURPOSE
To investigate changes in anterior chamber depth (ACD), corneal volume (CV), anterior chamber angle (ACA), anterior chamber volume (ACV), central corneal thickness (CCT), horizontal visible iris diameter (HVID), pupil diameter (PD), and intraocular pressure (IOP) after uneventful phacoemulsification cataract surgery with intraocular lens implantation.
METHODS
A total of 132 eyes of 132 patients (87 men and 45 women) that underwent uneventful phacoemulsification cataract surgery and intraocular lens implantation were prospectively studied. The mean age of the patients was 63.68 ± 12.51 years. All patients were evaluated preoperatively and at 1 month postoperatively with the Sirius 3D Rotating Scheimpflug camera topography system. The ACD, CV, ACA, ACV, CCT, HVID, and PD measurements were recorded. IOP was measured using the Goldmann applanation tonometer, which was corrected for CCT of the Sirius device using Ehlers' formula.
RESULTS
The preoperative mean ACD, ACV, ACA, CCT, CV, PD, HVID, and IOP were 2.79 ± 0.45 mm, 124.73 ± 25.72 mm³, 42.09 ± 7.49⁰, 523.87 ± 41.97 microns, 55.37 ± 4.89 mm³, 3.98 ± 1.23 mm, 11.72 ± 0.67 mm, and 14.74 ± 2.59 mmHg, respectively. Three months postoperatively, the mean ACD, ACV, ACA, CCT, CV, PD, HVID, and IOP were 3.45 ± 0.6 mm, 162.52 ± 23.79 mm³, 51.46 ± 5.63⁰, 526.21 ± 44.45 microns, 56.23 ± 5.12 mm³, 2.87 ± 0.45 mm, 11.91 ± 0.75 mm, and 12.02 ± 1.83 mmHg, respectively. There was a statistically significant increase in mean postoperative ACD, ACV, ACA, CV, and HVID compared with the corresponding preoperative values (p < 0.05). CCT remained stable after surgery. Postoperative PD and IOP were significantly decreased compared to corresponding preoperative values (p < 0.05).
CONCLUSIONS
Preoperative measurements by the Sirius 3D Rotating Scheimpflug camera topography system might help surgeons to predict postoperative changes resulting from phacoemulsification and intraocular lens implantation. This is a noncontact, noninvasive, and comfortable system for patients that is highly reliable and repeatable for anterior segment measurements.

Keyword

Anterior eye segment; Corneal topography; Phacoemulsification

MeSH Terms

Adolescent
Adult
Aged
Aged, 80 and over
Anterior Eye Segment/*diagnostic imaging/surgery
Cornea/*pathology/surgery
Corneal Topography/*methods
Female
Humans
Lens Implantation, Intraocular/*methods
Male
Middle Aged
Phacoemulsification/*methods
Postoperative Period
Prospective Studies
Treatment Outcome
Visual Acuity
Young Adult

Reference

1. Doganay S, Bozgul Firat P, Emre S, Yologlu S. Evaluation of anterior segment parameter changes using the Pentacam after uneventful phacoemulsification. Acta Ophthalmol. 2010; 88:601–606.
2. Cho YK, Chang HS, La TY, et al. Anterior segment parameters using Pentacam and prediction of corneal endothelial cell loss after cataract surgery. Korean J Ophthalmol. 2010; 24:284–290.
3. Takmaz T, Kosekahya P, Kurkcuoglu PZ. Anterior segment morphometry and intraocular pressure change after uneventful phacoemulsification. Turk J Med Sci. 2013; 43:289–293.
4. Dooley I, Charalampidou S, Malik A, et al. Changes in intraocular pressure and anterior segment morphometry after uneventful phacoemulsification cataract surgery. Eye (Lond). 2010; 24:519–526.
5. Issa SA, Pacheco J, Mahmood U, et al. A novel index for predicting intraocular pressure reduction following cataract surgery. Br J Ophthalmol. 2005; 89:543–546.
6. Kurimoto Y, Park M, Sakaue H, Kondo T. Changes in the anterior chamber configuration after small-incision cataract surgery with posterior chamber intraocular lens implantation. Am J Ophthalmol. 1997; 124:775–780.
7. Arai M, Ohzuno I, Zako M. Anterior chamber depth after posterior chamber intraocular lens implantation. Acta Ophthalmol (Copenh). 1994; 72:694–697.
8. Cekic O, Batman C, Totan Y, et al. Changes in anterior chamber depth and intraocular pressure after phacoemulsification and posterior chamber intraocular lens implantation. Ophthalmic Surg Lasers. 1998; 29:639–642.
9. Altan C, Bayraktar S, Altan T, et al. Anterior chamber depth, iridocorneal angle width, and intraocular pressure changes after uneventful phacoemulsification in eyes without glaucoma and with open iridocorneal angles. J Cataract Refract Surg. 2004; 30:832–838.
10. Memarzadeh F, Tang M, Li Y, et al. Optical coherence tomography assessment of angle anatomy changes after cataract surgery. Am J Ophthalmol. 2007; 144:464–465.
11. Kashiwagi K, Kashiwagi F, Tsukahara S. Effects of small-incision phacoemulsification and intraocular lens implantation on anterior chamber depth and intraocular pressure. J Glaucoma. 2006; 15:103–109.
12. Leung CK, Palmiero PM, Weinreb RN, et al. Comparisons of anterior segment biometry between Chinese and Caucasians using anterior segment optical coherence tomography. Br J Ophthalmol. 2010; 94:1184–1189.
13. Kim M, Park KH, Kim TW, Kim DM. Changes in anterior chamber configuration after cataract surgery as measured by anterior segment optical coherence tomography. Korean J Ophthalmol. 2011; 25:77–83.
14. Jorge J, Rosado J, Diaz-Rey J, Gonzalez-Meijome J. Central corneal thickness and anterior chamber depth measurement by Sirius(R) Scheimpflug tomography and ultrasound. Clin Ophthalmol. 2013; 7:417–422.
15. Savini G, Barboni P, Carbonelli M, Hoffer KJ. Repeatability of automatic measurements by a new Scheimpflug camera combined with Placido topography. J Cataract Refract Surg. 2011; 37:1809–1816.
16. Wegener A, Laser-Junga H. Photography of the anterior eye segment according to Scheimpflug's principle: options and limitations. A review. Clin Experiment Ophthalmol. 2009; 37:144–154.
17. Nemeth G, Vajas A, Kolozsvari B, et al. Anterior chamber depth measurements in phakic and pseudophakic eyes: Pentacam versus ultrasound device. J Cataract Refract Surg. 2006; 32:1331–1335.
18. Koranyi G, Lydahl E, Norrby S, Taube M. Anterior chamber depth measurement: a-scan versus optical methods. J Cataract Refract Surg. 2002; 28:243–247.
19. Hayashi K, Hayashi H, Nakao F, Hayashi F. Changes in anterior chamber angle width and depth after intraocular lens implantation in eyes with glaucoma. Ophthalmology. 2000; 107:698–703.
20. Pereira FA, Cronemberger S. Ultrasound biomicroscopic study of anterior segment changes after phacoemulsification and foldable intraocular lens implantation. Ophthalmology. 2003; 110:1799–1806.
21. Nonaka A, Kondo T, Kikuchi M, et al. Angle widening and alteration of ciliary process configuration after cataract surgery for primary angle closure. Ophthalmology. 2006; 113:437–441.
22. Miyake K, Asakura M, Kobayashi H. Effect of intraocular lens fixation on the blood-aqueous barrier. Am J Ophthalmol. 1984; 98:451–455.
23. Alpar JJ. Glaucoma after intraocular lens implantation: survey and recommendations. Glaucoma. 1985; 7:241–245.
24. Meyer MA, Savitt ML, Kopitas E. The effect of phacoemulsification on aqueous outf low facility. Ophthalmology. 1997; 104:1221–1227.
25. Kerstetter JR, Brubaker RF, Wilson SE, Kullerstrand LJ. Prostaglandin F2 alpha-1-isopropylester lowers intraocular pressure without decreasing aqueous humor flow. Am J Ophthalmol. 1988; 105:30–34.
26. O'Donnell C, Maldonado-Codina C. Agreement and repeatability of central thickness measurement in normal corneas using ultrasound pachymetry and the OCULUS Pentacam. Cornea. 2005; 24:920–924.
27. Amano S, Honda N, Amano Y, et al. Comparison of central corneal thickness measurements by rotating Scheimpflug camera, ultrasonic pachymetry, and scanning-slit corneal topography. Ophthalmology. 2006; 113:937–941.
28. Suzuki H, Takahashi H, Hori J, et al. Phacoemulsification associated corneal damage evaluated by corneal volume. Am J Ophthalmol. 2006; 142:525–528.
Full Text Links
  • KJO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr