J Korean Neurosurg Soc.  2001 Feb;30(2):131-136.

The Effect of Repetitive Insertion and Pullout of Spinal Screws on Pullout Resistance: A Biomechanical Study

Affiliations
  • 1Department of Neurosurgery, School of Medicine, Hanyang University, Seoul, Korea.
  • 2Department of Neurological Surgery, The Cleveland Clinic Foundation, Cleveland, Ohio, USA.
  • 3Department of Mechanical Engineering, University of New Mexico, Albuquerque, New Mexico, USA.

Abstract


OBJECTIVE
The clinical uses of screws are increasing with broader applications in spinal disorders. When screws are inserted repeatedly to achieve optimal position, tips of screw pitch may become damaged during insertion even though there are significant differences in the moduli of elasticity between bone and titanium. The effect of repeated screw insertion on pullout resistance was investigated.
METHODS
Three different titanium screws(cortical lateral mass screw, cancellous lateral mass screw and cervical vertebral body screw) were inserted into the synthetic cancellous material and then extracted axially at a rate of 2.4mm/min using Instron(Model TT-D, Canton, MA). Each set of screws was inserted and pulled out three times. There were six screws in each group. The insertional torque was measured with a torque wrench during insertion. Pullout strength was recorded with a digital oscilloscope.
RESULTS
The mean pullout force measurements for the cortical lateral mass screws(185.66N+/-42.60, 167.10N+/-27.01 and 162.52 N+/-23.83 for first, second and third pullout respectively: p=0.03) and the cervical vertebral body screws(386.0N+/-24.1, 360.2N+/-17.5 and 330.9N+/-16.7: p=0.0024) showed consecutive decrease in pullout resistance after each pullout, whereas the cancellous lateral mass screws did not(194.00N+/-36.47, 219.24N+/-26.58 and 199.49N(36.63: p=0.24). The SEM after insertion and pullout three times showed a blunting in the tip of the screw pitch and a smearing of the screw surface.
CONCLUSIONS
Repetitive screw insertion and pullout resulted in the decrease of pullout resistance in certain screws possibly caused by blunting the screw tip. This means screw tips suffer deformations during either repeated insertion or pullout. Thus, the screws that have been inserted should not be used for the final construct.

Keyword

Biomechanical; Pullout; Repetitive; Screw

MeSH Terms

Elasticity
Titanium
Torque
Titanium
Full Text Links
  • JKNS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr