J Cardiovasc Ultrasound.  2008 Mar;16(1):1-8. 10.4250/jcu.2008.16.1.1.

Mechanism of Ischemic Mitral Regurgitation

Affiliations
  • 1Second Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan. otsujiy@med.uoeh-u.ac.jp
  • 2Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Boston, USA.
  • 3Department of Cardiovascular Surgery, 4Cardiovascular Medicine, Kagoshima University, Kagoshima, Japan.

Abstract

No abstract available.

Keyword

Mitral regurgitation

MeSH Terms

Mitral Valve Insufficiency

Figure

  • Fig. 1 Apical displacement of the mitral leaflets in patients with Ischemic mitral regurgitation (MR). Normal mitral leaflets close at the annular level (yellow arrows). However, leaflets in patients with ischemic MR cannot reach the annular level and coapt at an apically displaced position (pink arrows).

  • Fig. 2 Two superimposing and opposing forces on the leaflets to determine its closing position. Reduced closing force and augmented tethering force may result in apically displaced leaflets and mitral regurgitation (MR).

  • Fig. 3 Practical method to measure papillary muscle (PM) tethering distance. In the apical 4- and 2-chamber views, distances between PM tip and the contralateral anterior annulus express outward displacement of the lateral and medial PM relative to the anterior annulus, respectively.

  • Fig. 4 Potential mechanism for the higher incidence of ischemic mitral regurgitation in inferior versus anterior myocardial infarction (MI). Although, global LV remodeling in anterior MI may involve broader LV without causing major alterations in the mitral valve complex. In contrast, LV remodeling in response to inferior MI may involve less globally but may cause local and major alterations in the mitral valve complex.

  • Fig. 5 Phasic changes in the degree of ischemic mitral regurgitation (MR) during systole. MR is minimal in mid-systole (white arrows) with maximal closing pressure, suggesting that reduced closing force augment MR in early and late systole (pink arrows).

  • Fig. 6 Initial proposal of papillary muscle (PM) dysfunction to cause ischemic mitral regurgitation (MR). PM dysfunction with reduced PM longitudinal shortening may induce leaflet prolapse and ischemic MR.

  • Fig.7 Two superimposing and opposing effects of papillary muscle (PM) dysfunction. Associated effects of PM dysfunction by remodeling of the adjacent wall may augment tethering and mitral regurgitation (MR). In contrast, direct effects of PM dysfunction reduced PM longitudinal shortening may reduce tethering and ischemic MR.

  • Fig. 8 Two representative patients with the same degree of mitral annular dilatation (pink arrows) and considerably different degrees of functional mitral regurgitation (MR). The left panel shows that annular dilatation in a patient with lone atrial fibrillation (Af) without left ventricular (LV) dilatation fails to cause leaflet tenting and significant MR. The right panel shows that the same degree of mitral annular dilatation in a patient with dilated cardiomyopathy (DCM) is associated with apically displaced leaflets and significant MR.

  • Fig. 9 Potential mechanism of beneficial surgical ring annuloplasty on ischemic mitral regurgitation (MR) despite that the surgery does not relieve tethering. The middle panel shows that development of the ischemic MR may be related to the consumption of physiological coaptation between the anterior and posterior leaflets. Surgical ring annuloplasty can potentially shift the posterior annulus and leaflet anteriorly so that the coaptation can be restored without rattenuating the tethering.

  • Fig. 10 Regional difference in tethering. Although apical displacement of leaflets involve whole anterior and posterior leaflets, the displacement is regionally augmented in the middle portion of the anterior leaflet (arrows).

  • Fig. 11 A patient with recurrent functional mitral regurgitation (MR) following mitral annuloplasty and aortic valve replacement. The mitral annuli are connected with a white line. The LV is dilated, the anterior leaflet is tethered (white arrow), and the posterior leaflet is extremely tethered (yellow arrow), resulting in more posterior coaptation (pink arrow) than posterior annulus (thinner yellow arrow).


Reference

1. Tcheng JE, Jackman JD Jr, Nelson CL, Gardner LH, Smith LR, Rankin JS, Califf RM, Stack RS. Outcome of patients sustaining acute ischemic mitral regurgitation during myocardial infarction. Ann Intern Med. 1992. 117:18–24.
Article
2. Lehmann KG, Francis CK, Dodge HT. Mitral regurgitation in early myocardial infarction. Incidence, clinical detection, and prognostic implications TIMI Study Group. Ann Intern Med. 1992. 117:10–17.
Article
3. Lamas GA, Mitchell GF, Flaker GC, Smith SC Jr, Gersh BJ, Basta L, Moye L, Braunwald E, Pfeffer MA. Clinical significance of mitral regurgitation after acute myocardial infarction. Survival and Ventricular Enlargement Investigators. Circulation. 1997. 96:827–833.
Article
4. Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation. 2001. 103:1759–1764.
Article
5. Kisanuki A, Otsuji Y, Kuroiwa R, Murayama T, Matsushita R, Shibata K, Yutsudo T, Nakao S, Nomoto K, Tomari T, et al. Two-dimensional echocardiographic assessment of papillary muscle contractility in patients with prior myocardial infarction. J Am Coll Cardiol. 1993. 21:932–938.
Article
6. Ogawa S, Hubbard FE, Mardelli TJ, Dreifus LS. Cross-sectional echocardiographic spectrum of papillary muscle dysfunction. Am Heart J. 1979. 97:312–321.
Article
7. Godley RW, Wann LS, Rogers EW, Feigenbaum H, Weyman AE. Incomplete mitral leaflet closure in patients with papillary muscle dysfunction. Circulation. 1981. 63:565–571.
Article
8. Otsuji Y, Handschumacher MD, Schwammenthal E, Jiang L, Song JK, Guerrero JL, Vlahakes GJ, Levine RA. Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation. 1997. 96:1999–2008.
Article
9. Yiu SF, Enriquez-Sarano M, Tribouilloy C, Seward JB, Tajik AJ. Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: A quantitative clinical study. Circulation. 2000. 102:1400–1406.
Article
10. Otsuji Y, Kumanohoso T, Yoshifuku S, Matsukida K, Koriyama C, Kisanuki A, Minagoe S, Levine RA, Tei C. Isolated annular dilation does not usually cause important functional mitral regurgitation: comparison between patients with lone atrial fibrillation and those with idiopathic or ischemic cardiomyopathy. J Am Coll Cardiol. 2002. 39:1651–1656.
Article
11. Kaul S, Spotnitz WD, Glasheen WP, Touchstone DA. Mechanism of ischemic mitral regurgitation. An experimental evaluation. Circulation. 1991. 84:2167–2180.
Article
12. Dent JM, Spotnitz WD, Nolan SP, Jayaweera AR, Glasheen WP, Kaul S. Mechanism of mitral leaflet excursion. Am J Physiol. 1995. 269:H2100–H2108.
Article
13. He S, Fontaine AA, Schwammenthal E, Yoganathan AP, Levine RA. Integrated mechanism for functional mitral regurgitation: leaflet restriction versus coapting force: in vitro studies. Circulation. 1997. 96:1826–1834.
Article
14. Otsuji Y, Handschumacher MD, Liel-Cohen N, Tanabe H, Jiang L, Schwammenthal E, Guerrero JL, Nicholls LA, Vlahakes GJ, Levine RA. Mechanism of ischemic mitral regurgitation with segmental left ventricular dysfunction: three-dimensional echocardiographic studies in models of acute and chronic progressive regurgitation. J Am Coll Cardiol. 2001. 37:641–648.
Article
15. Llaneras MR, Nance ML, Streicher JT, Linden PL, Downing SW, Lima JA, Deac R, Edmunds LH Jr. Pathogenesis of ischemic mitral insufficiency. J Thorac Cardiovasc Surg. 1993. 105:439–442. discussion 442-3.
Article
16. Gorman RC, McCaughan JS, Ratcliffe MB, Gupta KB, Streicher JT, Ferrari VA, St John-Sutton MG, Bogen DK, Edmunds LH Jr. Pathogenesis of acute ischemic mitral regurgitation in three dimensions. J Thorac Cardiovasc Surg. 1995. 109:684–693.
Article
17. Komeda M, Glasson JR, Bolger AF, Daughters GT 2nd, Mac Isaac A, Oesterle SN, Ingels NB Jr, Miller DC. Geometric determinants of ischemic mitral regurgitation. Circulation. 1997. 96:9 Suppl. II-128–II-133.
18. Kono T, Sabbah HN, Rosman H, Alam M, Jafri S, Stein PD, Goldstein S. Mechanism of functional mitral regurgitation during acute myocardial ischemia. . J Am Coll Cardiol. 1992. 19:1101–1105.
Article
19. Sabbah HN, Kono T, Rosman H, Jafri S, Stein PD, Goldstein S. Left ventricular shape: a factor in the etiology of functional mitral regurgitation in heart failure. Am Heart J. 1992. 123:961–966.
Article
20. Izumi S, Miyatake K, Beppu S, Park YD, Nagata S, Kinoshita N, Sakakibara H, Nimura Y. Mechanism of mitral regurgitation in patients with myocardial infarction: a study using real-time two-dimensional Doppler flow imaging and echocardiography. Circulation. 1987. 76:777–785.
Article
21. Leor J, Feinberg MS, Vered Z, Hod H, Kaplinsky E, Goldbourt U, Truman S, Motro M. Effect of thrombolytic therapy on the evolution of significant mitral regurgitation in patients with a first inferior myocardial infarction. J Am Coll Cardiol. 1993. 21:1661–1666.
Article
22. Gorman JH, Gorman RC, Plappert T, Jackson BM, Hiramatsu Y, St John-Sutton MG, Edmunds LH Jr. Infarct size and location determine development of mitral regurgitation in the sheep model. J Thorac Cardiovasc Surg. 1988. 115:615–622.
Article
23. Kumanohoso T, Otsuji Y, Yoshifuku S, Matsukida K, Koriyama C, Kisanuki A, Minagoe S, Levine RA, Tei C. Mechanism of higher incidence of ischemic mitral regurgitation in patients with inferior myocardial infarction: quantitative analysis of left ventricular and mitral valve geometry in 103 patients with prior myocardial infarction. J Thorac Cardiovasc Surg. 2003. 125:135–143.
Article
24. Liel-Cohen N, Guerrero JL, Otsuji Y, Handschumacher MD, Rudski LG, Hunziker PR, Tanabe H, Scherrer-Crosbie M, Sullivan S, Levine RA. Design of a new surgical approach for ventricular remodeling to relieve ischemic mitral regurgitation: insights from 3-dimensional echocardiography. Circulation. 2000. 101:2756–2763.
Article
25. Hung J, Guerrero JL, Handschumacher MD, Supple G, Sullivan S, Levine RA. Reverse ventricular remodeling reduces ischemic mitral regurgitation: echo-guided device application in the beating heart. Circulation. 2002. 106:2594–2600.
Article
26. Kron IL, Green GR, Cope JT. Surgical relocation of the posterior papillary muscle in chronic ischemic mitral regurgitation. Ann Thorac Surg. 2002. 74:600–601.
Article
27. Hvass U, Tapia M, Baron F, Pouzet B, Shafy A. Papillary muscle sling: a new functional approach to mitral repair in patients with ischemic left ventricular dysfunction and functional mitral regurgitation. Ann Thorac Surg. 2003. 75:809–811.
Article
28. Dobre M, Koul B, Rojer A. Anatomic and physiologic correction of the restricted posterior mitral leaflet motion in chronic ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2000. 120:409–411.
Article
29. Ueno T, Sakata R, Iguro Y, Nagata T, Otsuji Y, Tei C. A new surgical approach to reduce tethering in ischemic mitral regurgitation by relocation of separate heads of the posterior papillary muscle. Ann Thorac Surg. (in press).
30. Schwammenthal E, Chen C, Benning F, Block M, Breithardt G, Levine RA. Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation. 1994. 90:307–322.
Article
31. Hung J, Otsuji Y, Handschumacher MD, Schwammenthal E, Levine RA. Mechanism of dynamic regurgitant orifice area variation in functional mitral regurgitation: physiologic insights from the proximal flow convergence technique. J Am Coll Cardiol. 1999. 33:538–545.
Article
32. Breithardt OA, Sinha AM, Schwammenthal E, Bidaoui N, Markus KU, Franke A, Stellbrink C. Acute effects of cardiac resynchronization therapy on functional mitral regurgitation in advanced systolic heart failure. J Am Coll Cardiol. 2003. 41:765–770.
Article
33. Fukuda S, Grimm R, Song JM, Kihara T, Daimon M, Agler DA, Wilkoff BL, Natale A, Thomas JD, Shiota T. Electrical conduction disturbance effects on dynamic changes of functional mitral regurgitation. J Am Coll Cardiol. 2005. 12. 20. 46:2270–2276.
Article
34. Burch GE, De Pasquale NP, Phillips JH. Clinical manifestations of papillary muscle dysfunction. Arch Intern Med. 1963. 112:112–117.
Article
35. Burch GE, DePasquale NP, Phillips JH. The syndrome of papillary muscle dysfunction. Am Heart J. 1968. 75:399–415.
Article
36. Hider CF, Taylor DE, Wade JD. The effect of papillary muscle damage on atrioventricular valve function in the left heart. Q J Exp Physiol Cogn Med Sci. 1965. 50:15–22.
Article
37. Miller GE Jr, Kerth WJ, Gerbode F. Experimental papillary muscle infarction. J Thorac Cardiovasc Surg. 1968. 56:611–616.
Article
38. Tsakiris AG, Rastelli GC, Amorim Dde S, Titus JL, Wood EH. Effect of experimental papillary muscle damage on mitral valve closure in intact anesthetized dogs. Mayo Clin Proc. 1970. 45:275–285.
39. Mittal AK, Langston M Jr, Cohn KE, Selzer A, Kerth WJ. Combined papillary muscle and left ventricular wall dysfunction as a cause of mitral regurgitation. An experimental study. Circulation. 1971. 44:174–180.
Article
40. Matsuzaki M, Yonezawa F, Toma Y, Yonezawa F, Kohno M, Katayama K, Ozaki M, Kumada T, Kusukawa R. Experimental mitral regurgitation in ischemia-induced papillary muscle dysfunction. J Cardiol. 1988. 18:Suppl. 121–126.
41. Messas E, Guerrero JL, Handschumacher MD, Chow CM, Sullivan S, Schwammenthal E, Levine RA. Paradoxic decrease in ischemic mitral regurgitation with papillary muscle dysfunction: insights from three-dimensional and contrast echocardiography with strain rate measurement. Circulation. 2001. 104:1952–1957.
Article
42. Uemura T, Otsuji Y, Nakashiki K, Yoshifuku S, Maki Y, Yu B, Mizukami N, Kuwahara E, Hamasaki S, Biro S, Kisanuki A, Minagoe S, Levine RA, Tei C. Papillary muscle dysfunction attenuates ischemic mitral regurgitation in patients with localized basal inferior left ventricular remodeling: insights from tissue Doppler strain imaging. J Am Coll Cardiol. (in press).
43. Fundaro P, Pocar M, Moneta A, Donatelli F, Grossi A. Posterior mitral valve restoration for ischemic regurgitation. Ann Thorac Surg. 2004. 77:729–730.
Article
44. Jouan J, Tapia M, C Cook R, Lansac E, Acar C. Ischemic mitral valve prolapse: mechanisms and implications for valve repair. Eur J Cardiothorac Surg. 2004. 26:1112–1117.
Article
45. Tei C, Sakamaki T, Shah PM, Meerbaum S, Kondo S, Shimoura K, Corday E. Mitral valve prolapse in short-term experimental coronary occlusion: a possible mechanism of ischemic mitral regurgitation. Circulation. 1983. 68:183–189.
Article
46. Kanzaki H, Bazaz R, Schwartzman D, Dohi K, Sade LE, Gorcsan J 3rd. A mechanism for immediate reduction in mitral regurgitation after cardiac resynchronization therapy: insights from mechanical activation strain mapping. J Am Coll Cardiol. 2004. 44:1619–1625.
Article
47. Ypenburg C, Lancellotti P, Tops LF, Bleeker GB, Holman ER, Piérard LA, Schalij MJ, Bax JJ. Acute effects of initiation and withdrawal of cardiac resynchronization therapy on papillary muscle dyssynchrony and mitral regurgitation. J Am Coll Cardiol. 2007. 50:2071–2077.
Article
48. Ahmad RM, Gillinov AM, McCarthy PM, Blackstone EH, Apperson-Hansen C, Qin JX, Agler D, Shiota T, Cosgrove DM. Annular geometry and motion in human ischemic mitral regurgitation: novel assessment with three-dimensional echocardiography and computer reconstruction. Ann Thorac Surg. 2004. 78:2063–2068.
Article
49. Tibayan FA, Rodriguez F, Zasio MK, Bailey L, Liang D, Daughters GT, Langer F, Ingels NB Jr, Miller DC. Geometric distortions of the mitral valvular-ventricular complex in chronic ischemic mitral regurgitation. Circulation. 2003. 108:Suppl 1. II116–II121.
Article
50. Green GR, Dagum P, Glasson JR, Daughters GT, Bolger AF, Foppiano LE, Berry GJ, Ingels NB Jr, Miller DC. Mitral annular dilatation and papillary muscle dislocation without mitral regurgitation in sheep. Circulation. 1999. 100(19):Suppl. II95–II102.
Article
51. Boltwood CM, Tei C, Wong M, Shah PM. Quantitative echocardiography of the mitral complex in dilated cardiomyopathy: the mechanism of functional mitral regurgitation. Circulation. 1983. 68:498–508.
Article
52. Chandraratna PAN, Aronow WS. Mitral valve ring in normal vs dilated left ventricle: cross-sectional echocardiographic study. Chest. 1981. 79:151–154.
Article
53. Calafiore AM, Gallina S, Di Mauro M, Gaeta F, Iaco AL, D'Alessandro S, Mazzei V, Di Giammarco G. Mitral valve procedure in dilated cardiomyopathy: repair or replacement? Ann Thorac Surg. 2001. 71:1146–1152.
Article
54. Tahta SA, Oury JH, Maxwell JM, Hiro SP, Duran CM. Outcome after mitral valve repair for functional ischemic mitral regurgitation. J Heart Valve Dis. 2002. 11:11–18.
55. McGee EC Jr, Gillinov AM, Blackstone EH, Rajeswaran J, Cohen G, Najam F, Shiota T, Sabik JF, Lytle BW, McCarthy PM, Cosgrove DM. Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2004. 128:916–924.
Article
56. Hung J, Papakostas L, Tahta SA, Hardy BG, Bollen BA, Duran CM, Levine RA. Mechanism of recurrent ischemic mitral regurgitation after annuloplasty: continued LV remodeling as a moving target. Circulation. 2004. 110(11):Suppl 1. II85–II90.
Article
57. Sanfilippo AJ, Abascal VM, Sheehan M, Oertel LB, Harrigan P, Hughes RA, Weyman AE. Atrial enlargement as a consequence of atrial fibrillation: a prospective echocardiographic study. Circulation. 1990. 82:792–797.
Article
58. Levine RA, Handschumacher MD, Sanfilippo AJ, Hagege AA, Harrigan P, Marshall JE, Weyman AE. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation. 1989. 80:589–598.
Article
59. Flachskampf FA, Chandra S, Gaddipatti A, Levine RA, Weyman AE, Ameling W, Hanrath P, Thomas JD. Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. J Am Soc Echocardiogr. 2000. 13:277–287.
Article
60. Gorman JH 3rd, Jackson BM, Enomoto Y, Gorman RC. The effect of regional ischemia on mitral valve annular saddle shape. Ann Thorac Surg. 2004. 77:544–548.
Article
61. Bolling SF, Pagani FD, Deeb GM, Bach DS. Intermediate-term outcome of mitral reconstruction in cardiomyopathy. J Thorac Cardiovasc Surg. 1998. 115:381–386. discussion 387-8.
Article
62. Bach DS, Bolling SF. Improvement following correction of secondary mitral regurgitation in end-stage cardiomyopathy with mitral annuloplasty. Am J Cardiol. 1996. 78:966–969.
Article
63. Bach DS, Bolling SF. Early improvement in congestive heart failure after correction of secondary mitral regurgitation in end-stage cardiomyopathy. Am Heart J. 1995. 129:1165–1170.
Article
64. Bax JJ, Braun J, Somer ST, Klautz R, Holman ER, Versteegh MI, Boersma E, Schalij MJ, van der Wall EE, Dion RA. Restrictive annuloplasty and coronary revascularization in ischemic mitral regurgitation results in reverse left ventricular remodeling. Circulation. 2004. 110(11):Suppl 1. II103–II108.
Article
65. Weyman AE. Weyman AE, editor. Part 2 Clinical applications, 17 left ventricular inflow tract I: the mitral valve. Principles and Practice of Echocardiography. 1994. Philadelphia: Lea & Febiger;457.
66. Nesta F, Otsuji Y, Handschumacher MD, Messas E, Leavitt M, Carpentier A, Levine RA, Hung J. Leaflet concavity: a rapid visual clue to the presence and mechanism of functional mitral regurgitation. J Am Soc Echocardiogr. 2003. 16:1301–1308.
Article
67. Messas E, Guerrero JL, Handschumacher MD, Conrad C, Chow CM, Sullivan S, Yoganathan AP, Levine RA. Chordal cutting: a new therapeutic approach for ischemic mitral regurgitation. Circulation. 2001. 104:1958–1963.
68. Messas E, Pouzet B, Touchot B, Guerrero JL, Vlahakes GJ, Desnos M, Menasche P, Hagege A, Levine RA. Efficacy of chordal cutting to relieve chronic persistent ischemic mitral regurgitation. Circulation. 2003. 108:Suppl 1. II111–II115.
Article
69. Kwan J, Shiota T, Agler DA, Popovic ZB, Qin JX, Gillinov MA, Stewart WJ, Cosgrove DM, McCarthy PM, Thomas JD. Real-time three-dimensional echocardiography study. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regursgitation: real-time three-dimensional echocardiography study. Circulation. 2003. 107:1135–1140.
Article
70. Zhang H, Otsuji Y, Uemura T, Kumanohoso T, Yu B, Zhou X, Levine RA, Kisanuki A. Different mechanisms of ischemic mitral regurgitation in patients with anterior and inferior myocardial infarction. Circulation. 2003. 108:suppl IV. IV-432.
71. Watanabe N, Ogasawara Y, Yamaura Y, Yamamoto K, Wada N, Kawamoto T, Toyota E, Akasaka T, Yoshida K. Geometric differences of the mitral valve tenting between anterior and inferior myocardial infarction with significant ischemic mitral regurgitation: quantitation by novel software system with transthoracic real-time three-dimensional echocardiography. J Am Soc Echocardiogr. 2006. 19:71–75.
Article
72. Zhu F, Otsuji Y, Yotsumoto G, Yuasa T, Ueno T, Yu B, Koriyama C, Hamasaki S, Biro S, Kisanuki A, Minagoe S, Levine RA, Sakata R, Tei C. Mechanism of persistent ischemic mitral regurgitation following annuloplasty: importance of augmented posterior mitral leaflet tethering. Circulation. 2005. 112:suppl I. I-396–I-401.
73. Kuwahara E, Otsuji Y, Iguro Y, Ueno T, Zhu F, Mizukami N, Kubota K, Nakashiki K, Yuasa T, Yu B, Uemura T, Takasaki K, Miyata M, Hamasaki S, Kisanuki A, Levine RA, Sakata R, Tei C. Mechanism of Recurrent/Persistent Ischemic/Functional Mitral Regurgitation in the Chronic Phase Following Surgical Annuloplasty: Importance of Augmented Posterior Leaflet Tethering. Circulation. 2006. 114:Suppl I. I-529–I-534.
74. Watanabe N, Ogasawara Y, Yamaura Y, Kawamoto T, Toyota E, Akasaka T, Yoshida K. Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J Am Coll Cardiol. 2005. 45:763–769.
Article
Full Text Links
  • JCU
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr