2. Sharma P, McQuaid K, Dent J, et al. A critical review of the diagnosis and management of Barrett’s esophagus: the AGA Chicago Workshop. Gastroenterology. 2004; 127:310–330. DOI:
10.1053/j.gastro.2004.04.010. PMID:
15236196.
4. McColl KE. What is causing the rising incidence of esophageal adenocarcinoma in the West and will it also happen in the East? J Gastroenterol. 2019; 54:669–673. DOI:
10.1007/s00535-019-01593-7. PMID:
31172291.
5. Marques de Sá I, Pereira AD, Sharma P, et al. Systematic review of the published guidelines on Barrett’s esophagus: should we stress the consensus or the differences? Dis Esophagus. 2021; 34:doaa115. DOI:
10.1093/dote/doaa115.
6. Desai M, Lieberman D, Srinivasan S, et al. Post-endoscopy Barrett’s neoplasia after a negative index endoscopy: a systematic review and proposal for definitions and performance measures in endoscopy. Endoscopy. 2022; 54:881–889. DOI:
10.1055/a-1729-8066. PMID:
34979570.
7. Desai M, Lieberman DA, Kennedy KF, et al. Increasing prevalence of high-grade dysplasia and adenocarcinoma on index endoscopy in Barrett’s esophagus over the past 2 decades: data from a multicenter U.S. consortium. Gastrointest Endosc. 2019; 89:257–263. DOI:
10.1016/j.gie.2018.09.041. PMID:
30342028.
8. Visrodia K, Singh S, Krishnamoorthi R, et al. Magnitude of missed esophageal adenocarcinoma after Barrett’s esophagus diagnosis: a systematic review and meta-analysis. Gastroenterology. 2016; 150:599–607. DOI:
10.1053/j.gastro.2015.11.040. PMID:
26619962.
9. Parasa S, Desai M, Vittal A, et al. Estimating neoplasia detection rate (NDR) in patients with Barrett’s oesophagus based on index endoscopy: a systematic review and meta-analysis. Gut. 2019; 68:2122–2128. DOI:
10.1136/gutjnl-2018-317800. PMID:
30872393.
10. Iyer PG, Chak A. Surveillance in Barrett’s esophagus: challenges, progress, and possibilities. Gastroenterology. 2023; 164:707–718. DOI:
10.1053/j.gastro.2023.01.031. PMID:
36746210.
11. Simadibrata DM, Lesmana E, Fass R. Role of endoscopy in gastroesophageal reflux disease. Clin Endosc. 2023; 56:681–692. DOI:
10.5946/ce.2023.182. PMID:
37822063.
14. ASGE Standards of Practice Committee, Qumseya B, Sultan S, et al. ASGE guideline on screening and surveillance of Barrett’s esophagus. Gastrointest Endosc. 2019; 90:335–359. DOI:
10.1016/j.gie.2019.05.012. PMID:
31439127.
15. de Groof AJ, Fockens KN, Struyvenberg MR, et al. Blue-light imaging and linked-color imaging improve visualization of Barrett’s neoplasia by nonexpert endoscopists. Gastrointest Endosc. 2020; 91:1050–1057. DOI:
10.1016/j.gie.2019.12.037. PMID:
31904377.
16. Sharma P, Bergman JJ, Goda K, et al. Development and validation of a classification system to identify high-grade dysplasia and esophageal adenocarcinoma in Barrett’s esophagus using narrow-band imaging. Gastroenterology. 2016; 150:591–598. DOI:
10.1053/j.gastro.2015.11.037. PMID:
26627609.
17. Barbeiro S, Libânio D, Castro R, et al. Narrow-band imaging: clinical application in gastrointestinal endoscopy. GE Port J Gastroenterol. 2018; 26:40–53. DOI:
10.1159/000487470. PMID:
30675503.
18. Takeda T, Asaoka D, Abe D, et al. Linked color imaging improves visibility of reflux esophagitis. BMC Gastroenterol. 2020; 20:356. DOI:
10.1186/s12876-020-01511-9. PMID:
33109095.
19. Kim MS, Choi SR, Roh MH, et al. Efficacy of I-scan endoscopy in the diagnosis of gastroesophageal reflux disease with minimal change. Clin Endosc. 2011; 44:27–32. DOI:
10.5946/ce.2011.44.1.27. PMID:
22741109.
20. Hussein M, Lines D, González-Bueno Puyal J, et al. Computer-aided characterization of early cancer in Barrett’s esophagus on i-scan magnification imaging: a multicenter international study. Gastrointest Endosc. 2023; 97:646–654. DOI:
10.1016/j.gie.2022.11.020. PMID:
36460087.
21. Perisetti A, Sharma P. Tips for improving the identification of neoplastic visible lesions in Barrett’s esophagus. Gastrointest Endosc. 2023; 97:248–250. DOI:
10.1016/j.gie.2022.10.022. PMID:
36567201.
22. Basford PJ, Brown J, Gadeke L, et al. A randomized controlled trial of pre-procedure simethicone and N-acetylcysteine to improve mucosal visibility during gastroscopy: NICEVIS. Endosc Int Open. 2016; 4:E1197–E1202. DOI:
10.1055/s-0042-117631. PMID:
27853746.
23. Romańczyk M, Ostrowski B, Lesińska M, et al. The prospective validation of a scoring system to assess mucosal cleanliness during EGD. Gastrointest Endosc. 2024; 100:27–35. DOI:
10.1016/j.gie.2024.01.012. PMID:
38215856.
24. Romańczyk M, Ostrowski B, Kozłowska-Petriczko K, et al. Scoring system assessing mucosal visibility of upper gastrointestinal tract: the POLPREP scale. J Gastroenterol Hepatol. 2022; 37:164–168. DOI:
10.1111/jgh.15662. PMID:
34397116.
25. Desai M, Sharma P. High quality Barrett’s endoscopy: inspection time is a critical component. Endoscopy. 2023; 55:499–500. DOI:
10.1055/a-2042-9837. PMID:
36944358.
26. Gupta N, Gaddam S, Wani SB, et al. Longer inspection time is associated with increased detection of high-grade dysplasia and esophageal adenocarcinoma in Barrett’s esophagus. Gastrointest Endosc. 2012; 76:531–538. DOI:
10.1016/j.gie.2012.04.470. PMID:
22732877.
27. Vithayathil M, Modolell I, Ortiz-Fernandez-Sordo J, et al. The effect of procedural time on dysplasia detection rate during endoscopic surveillance of Barrett’s esophagus. Endoscopy. 2023; 55:491–498. DOI:
10.1055/a-2015-8883. PMID:
36657467.
28. Qumseya BJ, Wang H, Badie N, et al. Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with Barrett’s esophagus: a meta-analysis and systematic review. Clin Gastroenterol Hepatol. 2013; 11:1562–1570. DOI:
10.1016/j.cgh.2013.06.017. PMID:
23851020.
29. Kolb JM, Wani S. Barrett’s esophagus: current standards in advanced imaging. Transl Gastroenterol Hepatol. 2021; 6:14. DOI:
10.21037/tgh.2020.02.10. PMID:
33409408.
30. Pohl J, May A, Rabenstein T, et al. Comparison of computed virtual chromoendoscopy and conventional chromoendoscopy with acetic acid for detection of neoplasia in Barrett’s esophagus. Endoscopy. 2007; 39:594–598. DOI:
10.1055/s-2007-966649. PMID:
17611913.
31. Sharma P, Hawes RH, Bansal A, et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial. Gut. 2013; 62:15–21. DOI:
10.3410/f.14257023.793467847. PMID:
22315471.
32. Subramaniam S, Kandiah K, Schoon E, et al. Development and validation of the international blue light imaging for Barrett’s neoplasia classification. Gastrointest Endosc. 2020; 91:310–320. DOI:
10.1016/j.gie.2019.09.035. PMID:
31586576.
33. Everson MA, Lovat LB, Graham DG, et al. Virtual chromoendoscopy by using optical enhancement improves the detection of Barrett’s esophagus-associated neoplasia. Gastrointest Endosc. 2019; 89:247–256. DOI:
10.1016/j.gie.2018.09.032. PMID:
30291849.
34. Parasa S, Wallace MB, Srinivasan S, et al. Educational intervention to improve quality of care in Barrett’s esophagus: the AQUIRE randomized controlled trial. Gastrointest Endosc. 2022; 95:239–245. DOI:
10.1016/j.gie.2021.08.026. PMID:
34499903.
35. Bergman JJ, de Groof AJ, Pech O, et al. An interactive web-based educational tool improves detection and delineation of Barrett’s esophagus-related neoplasia. Gastroenterology. 2019; 156:1299–1308. DOI:
10.1053/j.gastro.2018.12.021. PMID:
30610858.
36. Hamade N, Kamboj AK, Krishnamoorthi R, et al. Systematic review with meta-analysis: neoplasia detection rate and post-endoscopy Barrett’s neoplasia in Barrett’s oesophagus. Aliment Pharmacol Ther. 2021; 54:546–559. DOI:
10.1111/apt.16531. PMID:
34275161.
37. Dhaliwal L, Codipilly DC, Gandhi P, et al. Neoplasia detection rate in Barrett’s esophagus and its impact on missed dysplasia: results from a large population-based database. Clin Gastroenterol Hepatol. 2021; 19:922–929. DOI:
10.1016/j.cgh.2020.07.034. PMID:
32707339.
38. Cui R, Wang L, Lin L, et al. Deep learning in Barrett's esophagus diagnosis: current status and future directions. Bioengineering (Basel). 2023; 10:1239. DOI:
10.3390/bioengineering10111239. PMID:
38002363.
39. Meinikheim M, Messmann H, Ebigbo A. Role of artificial intelligence in diagnosing Barrett’s esophagus-related neoplasia. Clin Endosc. 2023; 56:14–22. DOI:
10.5946/ce.2022.247. PMID:
36646423.
40. Kikuchi R, Okamoto K, Ozawa T, et al. Endoscopic artificial intelligence for image analysis in gastrointestinal neoplasms. Digestion. 2024; 105:419–435. DOI:
10.1159/000540251. PMID:
39068926.
41. van der Sommen F, Zinger S, Curvers WL, et al. Computer-aided detection of early neoplastic lesions in Barrett’s esophagus. Endoscopy. 2016; 48:617–624. DOI:
10.1055/s-0042-105284. PMID:
27100718.
42. Horie Y, Yoshio T, Aoyama K, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc. 2019; 89:25–32. DOI:
10.1016/j.gie.2018.07.037. PMID:
30120958.
43. Ghatwary N, Zolgharni M, Ye X. Early esophageal adenocarcinoma detection using deep learning methods. Int J Comput Assist Radiol Surg. 2019; 14:611–621. DOI:
10.1007/s11548-019-01914-4. PMID:
30666547.
44. Ebigbo A, Mendel R, Probst A, et al. Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma. Gut. 2019; 68:1143–1145. DOI:
10.1136/gutjnl-2018-317573. PMID:
30510110.
45. de Groof J, van der Sommen F, van der Putten J, et al. The Argos project: the development of a computer-aided detection system to improve detection of Barrett’s neoplasia on white light endoscopy. United European Gastroenterol J. 2019; 7:538–547. DOI:
10.1177/2050640619837443. PMID:
31065371.
46. de Groof AJ, Struyvenberg MR, van der Putten J, et al. Deep-learning system detects neoplasia in patients with Barrett’s esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology. 2020; 158:915–929. DOI:
10.1053/j.gastro.2019.11.030. PMID:
31759929.
47. de Groof AJ, Struyvenberg MR, Fockens KN, et al. Deep learning algorithm detection of Barrett’s neoplasia with high accuracy during live endoscopic procedures: a pilot study (with video). Gastrointest Endosc. 2020; 91:1242–1250. DOI:
10.1016/j.gie.2019.12.048. PMID:
31926965.
48. Ebigbo A, Mendel R, Probst A, et al. Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus. Gut. 2020; 69:615–616. DOI:
10.1136/gutjnl-2019-319460. PMID:
31541004.
49. Hashimoto R, Requa J, Dao T, et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video). Gastrointest Endosc. 2020; 91:1264–1271. DOI:
10.1016/j.gie.2019.12.049. PMID:
31930967.
50. Iwagami H, Ishihara R, Aoyama K, et al. Artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma. J Gastroenterol Hepatol. 2021; 36:131–136. DOI:
10.1111/jgh.15136. PMID:
32511793.
51. Struyvenberg MR, de Groof AJ, van der Putten J, et al. A computer-assisted algorithm for narrow-band imaging-based tissue characterization in Barrett’s esophagus. Gastrointest Endosc. 2021; 93:89–98. DOI:
10.1016/j.gie.2020.05.050. PMID:
32504696.
52. Hussein M, González-Bueno Puyal J, Lines D, et al. A new artificial intelligence system successfully detects and localises early neoplasia in Barrett’s esophagus by using convolutional neural networks. United European Gastroenterol J. 2022; 10:528–537. DOI:
10.1002/ueg2.12233. PMID:
35521666.
53. Fockens KN, Jukema JB, Boers T, et al. Towards a robust and compact deep learning system for primary detection of early Barrett’s neoplasia: Initial image-based results of training on a multi-center retrospectively collected data set. United European Gastroenterol J. 2023; 11:324–336. DOI:
10.1002/ueg2.12363. PMID:
37095718.
54. Fockens KN, Jong MR, Jukema JB, et al. A deep learning system for detection of early Barrett’s neoplasia: a model development and validation study. Lancet Digit Health. 2023; 5:e905–e916. PMID:
38000874.
55. Tsai MC, Yen HH, Tsai HY, et al. Artificial intelligence system for the detection of Barrett’s esophagus. World J Gastroenterol. 2023; 29:6198–6207. DOI:
10.3748/wjg.v29.i48.6198. PMID:
38186865.
56. Abdelrahim M, Saiko M, Maeda N, et al. Development and validation of artificial neural networks model for detection of Barrett’s neoplasia: a multicenter pragmatic nonrandomized trial (with video). Gastrointest Endosc. 2023; 97:422–434. DOI:
10.1016/j.gie.2022.10.031. PMID:
36283443.
57. Takeda T, Asaoka D, Ueyama H, et al. Development of an artificial intelligence diagnostic system using linked color imaging for Barrett’s esophagus. J Clin Med. 2024; 13:1990. DOI:
10.3390/jcm13071990. PMID:
38610762.
58. Meinikheim M, Mendel R, Palm C, et al. Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett’s esophagus: a tandem randomized and video trial. Endoscopy. 2024; 56:641–649. DOI:
10.1055/a-2296-5696. PMID:
38547927.
59. Guidozzi N, Menon N, Chidambaram S, et al. The role of artificial intelligence in the endoscopic diagnosis of esophageal cancer: a systematic review and meta-analysis. Dis Esophagus. 2023; 36:doad048. DOI:
10.1093/dote/doad048. PMID:
37480192.
60. Wu L, Zhang J, Zhou W, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. Gut. 2019; 68:2161–2169. DOI:
10.1136/gutjnl-2018-317366. PMID:
30858305.
61. Botros M, de Boer OJ, Cardenas B, et al. Deep learning for histopathological assessment of esophageal adenocarcinoma precursor lesions. Mod Pathol. 2024; 37:100531. DOI:
10.1016/j.modpat.2024.100531. PMID:
38830407.
62. Faghani S, Codipilly DC, David Vogelsang, et al. Development of a deep learning model for the histologic diagnosis of dysplasia in Barrett’s esophagus. Gastrointest Endosc. 2022; 96:918–925. DOI:
10.1016/j.gie.2022.06.013. PMID:
35718071.
63. Sharma P, Dent J, Armstrong D, et al. The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & M criteria. Gastroenterology. 2006; 131:1392–1399. DOI:
10.1053/j.gastro.2006.08.032. PMID:
17101315.
64. Ali S, Bailey A, Ash S, et al. A pilot study on automatic three-dimensional quantification of Barrett’s esophagus for risk stratification and therapy monitoring. Gastroenterology. 2021; 161:865–878. DOI:
10.1053/j.gastro.2021.05.059. PMID:
34116029.
65. Iyer PG, Sachdeva K, Leggett CL, et al. Development of electronic health record-based machine learning models to predict Barrett’s esophagus and esophageal adenocarcinoma risk. Clin Transl Gastroenterol. 2023; 14:e00637. DOI:
10.14309/ctg.0000000000000637. PMID:
37698203.
66. Theocharopoulos C, Davakis S, Ziogas DC, et al. Deep learning for image analysis in the diagnosis and management of esophageal cancer. Cancers (Basel). 2024; 16:3285. DOI:
10.3390/cancers16193285. PMID:
39409906.
67. Kröner PT, Engels MM, Glicksberg BS, et al. Artificial intelligence in gastroenterology: a state-of-the-art review. World J Gastroenterol. 2021; 27:6794–6824. DOI:
10.3748/wjg.v27.i40.6794. PMID:
34790008.
68. Vantanasiri K, Kamboj AK, Kisiel JB, et al. Advances in screening for Barrett esophagus and esophageal adenocarcinoma. Mayo Clin Proc. 2024; 99:459–473. DOI:
10.1016/j.mayocp.2023.07.014. PMID:
38276943.
69. Gora MJ, Sauk JS, Carruth RW, et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat Med. 2013; 19:238–240. DOI:
10.1038/nm.3052. PMID:
23314056.
70. Gora MJ, Quénéhervé L, Carruth RW, et al. Tethered capsule endomicroscopy for microscopic imaging of the esophagus, stomach, and duodenum without sedation in humans (with video). Gastrointest Endosc. 2018; 88:830–840. DOI:
10.1016/j.gie.2018.07.009. PMID:
30031805.
71. Dong J, Grant C, Vuong B, et al. Feasibility and safety of tethered capsule endomicroscopy in patients with Barrett’s esophagus in a multi-center study. Clin Gastroenterol Hepatol. 2022; 20:756–765. DOI:
10.1016/j.cgh.2021.02.008. PMID:
33549871.
72. Zilberstein N, Godbee M, Mehta NA, et al. Advanced endoscopic imaging for detection of Barrett’s esophagus. Clin Endosc. 2024; 57:1–10. DOI:
10.5946/ce.2023.031. PMID:
38178326.
73. Fitzgerald RC, di Pietro M, O’Donovan M, et al. Cytosponge-trefoil factor 3 versus usual care to identify Barrett’s oesophagus in a primary care setting: a multicentre, pragmatic, randomised controlled trial. Lancet. 2020; 396:333–344. DOI:
10.1016/s0140-6736(20)31099-0. PMID:
32738955.
74. Swart N, Maroni R, Muldrew B, et al. Economic evaluation of Cytosponge®-trefoil factor 3 for Barrett esophagus: a cost-utility analysis of randomised controlled trial data. EClinicalMedicine. 2021; 37:100969. DOI:
10.1016/j.eclinm.2021.100969. PMID:
34195582.
75. Iyer PG, Taylor WR, Slettedahl SW, et al. Validation of a methylated DNA marker panel for the nonendoscopic detection of Barrett’s esophagus in a multisite case-control study. Gastrointest Endosc. 2021; 94:498–505. DOI:
10.1016/j.gie.2021.03.937. PMID:
33857451.
76. Wang Z, Kambhampati Thiruvengadam S, Cheng Y, et al. Methylation biomarker panel performance in EsophaCap cytology samples for diagnosing Barrett’s esophagus: a prospective validation study. Clin Cancer Res. 2019; 25:2127–2135. DOI:
10.1158/1078-0432.ccr-18-3696. PMID:
30670490.
77. Ghosal A, Verma S, Le IT, et al. Analytical validation of a DNA methylation biomarker test for the diagnosis of Barrett’s esophagus and esophageal adenocarcinoma from samples collected using EsoCheck®, a non-endoscopic esophageal cell collection device. Diagnostics (Basel). 2024; 14:1784. DOI:
10.3390/diagnostics14161784. PMID:
39202271.
78. Saeian K, Staff DM, Vasilopoulos S, et al. Unsedated transnasal endoscopy accurately detects Barrett’s metaplasia and dysplasia. Gastrointest Endosc. 2002; 56:472–478. DOI:
10.1016/s0016-5107(02)70429-x. PMID:
12297760.
79. Chiam K, Wang T, Watson DI, et al. Circulating serum exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J Gastrointest Surg. 2015; 19:1208–1215. DOI:
10.1007/s11605-015-2829-9. PMID:
25943911.
80. Bus P, Kestens C, Ten Kate FJ, et al. Profiling of circulating microRNAs in patients with Barrett’s esophagus and esophageal adenocarcinoma. J Gastroenterol. 2016; 51:560–570. DOI:
10.1007/s00535-015-1133-5. PMID:
26585599.
81. Zhang Z, Curran G, Altinok Dindar D, et al. Insights into the oral microbiome and Barrett’s esophagus early detection: a narrative review. Clin Transl Gastroenterol. 2021; 12:e00390. DOI:
10.14309/ctg.0000000000000390. PMID:
34446641.
82. Chan DK, Zakko L, Visrodia KH, et al. Breath testing for Barrett’s esophagus using exhaled volatile organic compound profiling with an electronic nose device. Gastroenterology. 2017; 152:24–26. DOI:
10.1053/j.gastro.2016.11.001. PMID:
27825962.
83. Peters Y, Schrauwen RW, Tan AC, et al. Detection of Barrett’s oesophagus through exhaled breath using an electronic nose device. Gut. 2020; 69:1169–1172. DOI:
10.1136/gutjnl-2019-320273. PMID:
32098798.