Clin Endosc.  2025 Jul;58(4):503-513. 10.5946/ce.2024.324.

Future of image enhanced endoscopy of esophageal adenocarcinoma

Affiliations
  • 1Department of Internal Medicine, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
  • 2Division of Gastroenterology and Hepatology, Department of Internal Medicine, Istanbul Demiroglu Bilim University Faculty of Medicine, Istanbul, Turkey
  • 3Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA

Abstract

Barrett’s esophagus is a premalignant precursor lesion of esophageal adenocarcinoma that affects approximately 1% of the population worldwide. Esophageal adenocarcinoma has a high mortality rate with a five-year survival of 15% to 20%. Early detection of Barrett's esophagus and dysplasia via endoscopy is crucial for preventing its progression to esophageal adenocarcinoma. New imaging techniques, such as image-enhanced endoscopy, have simplified the identification of Barrett’s esophagus, dysplasia, and esophageal adenocarcinoma. Narrow-band imaging, blue-light imaging, and i-Scan are the prominent image-enhanced endoscopic techniques used to detect neoplasia. In Barrett’s screening and surveillance, key aspects such as the screening population, tools, and intervals need to be clearly defined and standardized for future guidelines to improve the detection of precursor lesions and reduce the incidence of esophageal adenocarcinoma. Making image-enhanced endoscopy less subjective and enhancing the quality measures during endoscopy are crucial steps. Examples of quality measures include cleaning the esophagus before endoscopy and allowing sufficient time for inspection. Artificial intelligence systems can aid the early identification of lesions and reduce subjectivity.


Reference

1. Sharma P. Barrett esophagus: a review. JAMA. 2022; 328:663–671. DOI: 10.1001/jama.2022.13298. PMID: 35972481.
2. Sharma P, McQuaid K, Dent J, et al. A critical review of the diagnosis and management of Barrett’s esophagus: the AGA Chicago Workshop. Gastroenterology. 2004; 127:310–330. DOI: 10.1053/j.gastro.2004.04.010. PMID: 15236196.
3. Sharma P. Clinical practice. Barrett’s esophagus. N Engl J Med. 2009; 361:2548–2556. DOI: 10.1056/nejmcp0902173. PMID: 20032324.
4. McColl KE. What is causing the rising incidence of esophageal adenocarcinoma in the West and will it also happen in the East? J Gastroenterol. 2019; 54:669–673. DOI: 10.1007/s00535-019-01593-7. PMID: 31172291.
5. Marques de Sá I, Pereira AD, Sharma P, et al. Systematic review of the published guidelines on Barrett’s esophagus: should we stress the consensus or the differences? Dis Esophagus. 2021; 34:doaa115. DOI: 10.1093/dote/doaa115.
6. Desai M, Lieberman D, Srinivasan S, et al. Post-endoscopy Barrett’s neoplasia after a negative index endoscopy: a systematic review and proposal for definitions and performance measures in endoscopy. Endoscopy. 2022; 54:881–889. DOI: 10.1055/a-1729-8066. PMID: 34979570.
7. Desai M, Lieberman DA, Kennedy KF, et al. Increasing prevalence of high-grade dysplasia and adenocarcinoma on index endoscopy in Barrett’s esophagus over the past 2 decades: data from a multicenter U.S. consortium. Gastrointest Endosc. 2019; 89:257–263. DOI: 10.1016/j.gie.2018.09.041. PMID: 30342028.
8. Visrodia K, Singh S, Krishnamoorthi R, et al. Magnitude of missed esophageal adenocarcinoma after Barrett’s esophagus diagnosis: a systematic review and meta-analysis. Gastroenterology. 2016; 150:599–607. DOI: 10.1053/j.gastro.2015.11.040. PMID: 26619962.
9. Parasa S, Desai M, Vittal A, et al. Estimating neoplasia detection rate (NDR) in patients with Barrett’s oesophagus based on index endoscopy: a systematic review and meta-analysis. Gut. 2019; 68:2122–2128. DOI: 10.1136/gutjnl-2018-317800. PMID: 30872393.
10. Iyer PG, Chak A. Surveillance in Barrett’s esophagus: challenges, progress, and possibilities. Gastroenterology. 2023; 164:707–718. DOI: 10.1053/j.gastro.2023.01.031. PMID: 36746210.
11. Simadibrata DM, Lesmana E, Fass R. Role of endoscopy in gastroesophageal reflux disease. Clin Endosc. 2023; 56:681–692. DOI: 10.5946/ce.2023.182. PMID: 37822063.
12. Singh R, Yeap SP. Endoscopic imaging in Barrett’s esophagus. Expert Rev Gastroenterol Hepatol. 2015; 9:475–485. DOI: 10.1586/17474124.2015.983080. PMID: 25399554.
13. Jang JY. The past, present, and future of image-enhanced endoscopy. Clin Endosc. 2015; 48:466–475. DOI: 10.5946/ce.2015.48.6.466. PMID: 26668791.
14. ASGE Standards of Practice Committee, Qumseya B, Sultan S, et al. ASGE guideline on screening and surveillance of Barrett’s esophagus. Gastrointest Endosc. 2019; 90:335–359. DOI: 10.1016/j.gie.2019.05.012. PMID: 31439127.
15. de Groof AJ, Fockens KN, Struyvenberg MR, et al. Blue-light imaging and linked-color imaging improve visualization of Barrett’s neoplasia by nonexpert endoscopists. Gastrointest Endosc. 2020; 91:1050–1057. DOI: 10.1016/j.gie.2019.12.037. PMID: 31904377.
16. Sharma P, Bergman JJ, Goda K, et al. Development and validation of a classification system to identify high-grade dysplasia and esophageal adenocarcinoma in Barrett’s esophagus using narrow-band imaging. Gastroenterology. 2016; 150:591–598. DOI: 10.1053/j.gastro.2015.11.037. PMID: 26627609.
17. Barbeiro S, Libânio D, Castro R, et al. Narrow-band imaging: clinical application in gastrointestinal endoscopy. GE Port J Gastroenterol. 2018; 26:40–53. DOI: 10.1159/000487470. PMID: 30675503.
18. Takeda T, Asaoka D, Abe D, et al. Linked color imaging improves visibility of reflux esophagitis. BMC Gastroenterol. 2020; 20:356. DOI: 10.1186/s12876-020-01511-9. PMID: 33109095.
19. Kim MS, Choi SR, Roh MH, et al. Efficacy of I-scan endoscopy in the diagnosis of gastroesophageal reflux disease with minimal change. Clin Endosc. 2011; 44:27–32. DOI: 10.5946/ce.2011.44.1.27. PMID: 22741109.
20. Hussein M, Lines D, González-Bueno Puyal J, et al. Computer-aided characterization of early cancer in Barrett’s esophagus on i-scan magnification imaging: a multicenter international study. Gastrointest Endosc. 2023; 97:646–654. DOI: 10.1016/j.gie.2022.11.020. PMID: 36460087.
21. Perisetti A, Sharma P. Tips for improving the identification of neoplastic visible lesions in Barrett’s esophagus. Gastrointest Endosc. 2023; 97:248–250. DOI: 10.1016/j.gie.2022.10.022. PMID: 36567201.
22. Basford PJ, Brown J, Gadeke L, et al. A randomized controlled trial of pre-procedure simethicone and N-acetylcysteine to improve mucosal visibility during gastroscopy: NICEVIS. Endosc Int Open. 2016; 4:E1197–E1202. DOI: 10.1055/s-0042-117631. PMID: 27853746.
23. Romańczyk M, Ostrowski B, Lesińska M, et al. The prospective validation of a scoring system to assess mucosal cleanliness during EGD. Gastrointest Endosc. 2024; 100:27–35. DOI: 10.1016/j.gie.2024.01.012. PMID: 38215856.
24. Romańczyk M, Ostrowski B, Kozłowska-Petriczko K, et al. Scoring system assessing mucosal visibility of upper gastrointestinal tract: the POLPREP scale. J Gastroenterol Hepatol. 2022; 37:164–168. DOI: 10.1111/jgh.15662. PMID: 34397116.
25. Desai M, Sharma P. High quality Barrett’s endoscopy: inspection time is a critical component. Endoscopy. 2023; 55:499–500. DOI: 10.1055/a-2042-9837. PMID: 36944358.
26. Gupta N, Gaddam S, Wani SB, et al. Longer inspection time is associated with increased detection of high-grade dysplasia and esophageal adenocarcinoma in Barrett’s esophagus. Gastrointest Endosc. 2012; 76:531–538. DOI: 10.1016/j.gie.2012.04.470. PMID: 22732877.
27. Vithayathil M, Modolell I, Ortiz-Fernandez-Sordo J, et al. The effect of procedural time on dysplasia detection rate during endoscopic surveillance of Barrett’s esophagus. Endoscopy. 2023; 55:491–498. DOI: 10.1055/a-2015-8883. PMID: 36657467.
28. Qumseya BJ, Wang H, Badie N, et al. Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with Barrett’s esophagus: a meta-analysis and systematic review. Clin Gastroenterol Hepatol. 2013; 11:1562–1570. DOI: 10.1016/j.cgh.2013.06.017. PMID: 23851020.
29. Kolb JM, Wani S. Barrett’s esophagus: current standards in advanced imaging. Transl Gastroenterol Hepatol. 2021; 6:14. DOI: 10.21037/tgh.2020.02.10. PMID: 33409408.
30. Pohl J, May A, Rabenstein T, et al. Comparison of computed virtual chromoendoscopy and conventional chromoendoscopy with acetic acid for detection of neoplasia in Barrett’s esophagus. Endoscopy. 2007; 39:594–598. DOI: 10.1055/s-2007-966649. PMID: 17611913.
31. Sharma P, Hawes RH, Bansal A, et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial. Gut. 2013; 62:15–21. DOI: 10.3410/f.14257023.793467847. PMID: 22315471.
32. Subramaniam S, Kandiah K, Schoon E, et al. Development and validation of the international blue light imaging for Barrett’s neoplasia classification. Gastrointest Endosc. 2020; 91:310–320. DOI: 10.1016/j.gie.2019.09.035. PMID: 31586576.
33. Everson MA, Lovat LB, Graham DG, et al. Virtual chromoendoscopy by using optical enhancement improves the detection of Barrett’s esophagus-associated neoplasia. Gastrointest Endosc. 2019; 89:247–256. DOI: 10.1016/j.gie.2018.09.032. PMID: 30291849.
34. Parasa S, Wallace MB, Srinivasan S, et al. Educational intervention to improve quality of care in Barrett’s esophagus: the AQUIRE randomized controlled trial. Gastrointest Endosc. 2022; 95:239–245. DOI: 10.1016/j.gie.2021.08.026. PMID: 34499903.
35. Bergman JJ, de Groof AJ, Pech O, et al. An interactive web-based educational tool improves detection and delineation of Barrett’s esophagus-related neoplasia. Gastroenterology. 2019; 156:1299–1308. DOI: 10.1053/j.gastro.2018.12.021. PMID: 30610858.
36. Hamade N, Kamboj AK, Krishnamoorthi R, et al. Systematic review with meta-analysis: neoplasia detection rate and post-endoscopy Barrett’s neoplasia in Barrett’s oesophagus. Aliment Pharmacol Ther. 2021; 54:546–559. DOI: 10.1111/apt.16531. PMID: 34275161.
37. Dhaliwal L, Codipilly DC, Gandhi P, et al. Neoplasia detection rate in Barrett’s esophagus and its impact on missed dysplasia: results from a large population-based database. Clin Gastroenterol Hepatol. 2021; 19:922–929. DOI: 10.1016/j.cgh.2020.07.034. PMID: 32707339.
38. Cui R, Wang L, Lin L, et al. Deep learning in Barrett's esophagus diagnosis: current status and future directions. Bioengineering (Basel). 2023; 10:1239. DOI: 10.3390/bioengineering10111239. PMID: 38002363.
39. Meinikheim M, Messmann H, Ebigbo A. Role of artificial intelligence in diagnosing Barrett’s esophagus-related neoplasia. Clin Endosc. 2023; 56:14–22. DOI: 10.5946/ce.2022.247. PMID: 36646423.
40. Kikuchi R, Okamoto K, Ozawa T, et al. Endoscopic artificial intelligence for image analysis in gastrointestinal neoplasms. Digestion. 2024; 105:419–435. DOI: 10.1159/000540251. PMID: 39068926.
41. van der Sommen F, Zinger S, Curvers WL, et al. Computer-aided detection of early neoplastic lesions in Barrett’s esophagus. Endoscopy. 2016; 48:617–624. DOI: 10.1055/s-0042-105284. PMID: 27100718.
42. Horie Y, Yoshio T, Aoyama K, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc. 2019; 89:25–32. DOI: 10.1016/j.gie.2018.07.037. PMID: 30120958.
43. Ghatwary N, Zolgharni M, Ye X. Early esophageal adenocarcinoma detection using deep learning methods. Int J Comput Assist Radiol Surg. 2019; 14:611–621. DOI: 10.1007/s11548-019-01914-4. PMID: 30666547.
44. Ebigbo A, Mendel R, Probst A, et al. Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma. Gut. 2019; 68:1143–1145. DOI: 10.1136/gutjnl-2018-317573. PMID: 30510110.
45. de Groof J, van der Sommen F, van der Putten J, et al. The Argos project: the development of a computer-aided detection system to improve detection of Barrett’s neoplasia on white light endoscopy. United European Gastroenterol J. 2019; 7:538–547. DOI: 10.1177/2050640619837443. PMID: 31065371.
46. de Groof AJ, Struyvenberg MR, van der Putten J, et al. Deep-learning system detects neoplasia in patients with Barrett’s esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology. 2020; 158:915–929. DOI: 10.1053/j.gastro.2019.11.030. PMID: 31759929.
47. de Groof AJ, Struyvenberg MR, Fockens KN, et al. Deep learning algorithm detection of Barrett’s neoplasia with high accuracy during live endoscopic procedures: a pilot study (with video). Gastrointest Endosc. 2020; 91:1242–1250. DOI: 10.1016/j.gie.2019.12.048. PMID: 31926965.
48. Ebigbo A, Mendel R, Probst A, et al. Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus. Gut. 2020; 69:615–616. DOI: 10.1136/gutjnl-2019-319460. PMID: 31541004.
49. Hashimoto R, Requa J, Dao T, et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video). Gastrointest Endosc. 2020; 91:1264–1271. DOI: 10.1016/j.gie.2019.12.049. PMID: 31930967.
50. Iwagami H, Ishihara R, Aoyama K, et al. Artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma. J Gastroenterol Hepatol. 2021; 36:131–136. DOI: 10.1111/jgh.15136. PMID: 32511793.
51. Struyvenberg MR, de Groof AJ, van der Putten J, et al. A computer-assisted algorithm for narrow-band imaging-based tissue characterization in Barrett’s esophagus. Gastrointest Endosc. 2021; 93:89–98. DOI: 10.1016/j.gie.2020.05.050. PMID: 32504696.
52. Hussein M, González-Bueno Puyal J, Lines D, et al. A new artificial intelligence system successfully detects and localises early neoplasia in Barrett’s esophagus by using convolutional neural networks. United European Gastroenterol J. 2022; 10:528–537. DOI: 10.1002/ueg2.12233. PMID: 35521666.
53. Fockens KN, Jukema JB, Boers T, et al. Towards a robust and compact deep learning system for primary detection of early Barrett’s neoplasia: Initial image-based results of training on a multi-center retrospectively collected data set. United European Gastroenterol J. 2023; 11:324–336. DOI: 10.1002/ueg2.12363. PMID: 37095718.
54. Fockens KN, Jong MR, Jukema JB, et al. A deep learning system for detection of early Barrett’s neoplasia: a model development and validation study. Lancet Digit Health. 2023; 5:e905–e916. PMID: 38000874.
55. Tsai MC, Yen HH, Tsai HY, et al. Artificial intelligence system for the detection of Barrett’s esophagus. World J Gastroenterol. 2023; 29:6198–6207. DOI: 10.3748/wjg.v29.i48.6198. PMID: 38186865.
56. Abdelrahim M, Saiko M, Maeda N, et al. Development and validation of artificial neural networks model for detection of Barrett’s neoplasia: a multicenter pragmatic nonrandomized trial (with video). Gastrointest Endosc. 2023; 97:422–434. DOI: 10.1016/j.gie.2022.10.031. PMID: 36283443.
57. Takeda T, Asaoka D, Ueyama H, et al. Development of an artificial intelligence diagnostic system using linked color imaging for Barrett’s esophagus. J Clin Med. 2024; 13:1990. DOI: 10.3390/jcm13071990. PMID: 38610762.
58. Meinikheim M, Mendel R, Palm C, et al. Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett’s esophagus: a tandem randomized and video trial. Endoscopy. 2024; 56:641–649. DOI: 10.1055/a-2296-5696. PMID: 38547927.
59. Guidozzi N, Menon N, Chidambaram S, et al. The role of artificial intelligence in the endoscopic diagnosis of esophageal cancer: a systematic review and meta-analysis. Dis Esophagus. 2023; 36:doad048. DOI: 10.1093/dote/doad048. PMID: 37480192.
60. Wu L, Zhang J, Zhou W, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. Gut. 2019; 68:2161–2169. DOI: 10.1136/gutjnl-2018-317366. PMID: 30858305.
61. Botros M, de Boer OJ, Cardenas B, et al. Deep learning for histopathological assessment of esophageal adenocarcinoma precursor lesions. Mod Pathol. 2024; 37:100531. DOI: 10.1016/j.modpat.2024.100531. PMID: 38830407.
62. Faghani S, Codipilly DC, David Vogelsang, et al. Development of a deep learning model for the histologic diagnosis of dysplasia in Barrett’s esophagus. Gastrointest Endosc. 2022; 96:918–925. DOI: 10.1016/j.gie.2022.06.013. PMID: 35718071.
63. Sharma P, Dent J, Armstrong D, et al. The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & M criteria. Gastroenterology. 2006; 131:1392–1399. DOI: 10.1053/j.gastro.2006.08.032. PMID: 17101315.
64. Ali S, Bailey A, Ash S, et al. A pilot study on automatic three-dimensional quantification of Barrett’s esophagus for risk stratification and therapy monitoring. Gastroenterology. 2021; 161:865–878. DOI: 10.1053/j.gastro.2021.05.059. PMID: 34116029.
65. Iyer PG, Sachdeva K, Leggett CL, et al. Development of electronic health record-based machine learning models to predict Barrett’s esophagus and esophageal adenocarcinoma risk. Clin Transl Gastroenterol. 2023; 14:e00637. DOI: 10.14309/ctg.0000000000000637. PMID: 37698203.
66. Theocharopoulos C, Davakis S, Ziogas DC, et al. Deep learning for image analysis in the diagnosis and management of esophageal cancer. Cancers (Basel). 2024; 16:3285. DOI: 10.3390/cancers16193285. PMID: 39409906.
67. Kröner PT, Engels MM, Glicksberg BS, et al. Artificial intelligence in gastroenterology: a state-of-the-art review. World J Gastroenterol. 2021; 27:6794–6824. DOI: 10.3748/wjg.v27.i40.6794. PMID: 34790008.
68. Vantanasiri K, Kamboj AK, Kisiel JB, et al. Advances in screening for Barrett esophagus and esophageal adenocarcinoma. Mayo Clin Proc. 2024; 99:459–473. DOI: 10.1016/j.mayocp.2023.07.014. PMID: 38276943.
69. Gora MJ, Sauk JS, Carruth RW, et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat Med. 2013; 19:238–240. DOI: 10.1038/nm.3052. PMID: 23314056.
70. Gora MJ, Quénéhervé L, Carruth RW, et al. Tethered capsule endomicroscopy for microscopic imaging of the esophagus, stomach, and duodenum without sedation in humans (with video). Gastrointest Endosc. 2018; 88:830–840. DOI: 10.1016/j.gie.2018.07.009. PMID: 30031805.
71. Dong J, Grant C, Vuong B, et al. Feasibility and safety of tethered capsule endomicroscopy in patients with Barrett’s esophagus in a multi-center study. Clin Gastroenterol Hepatol. 2022; 20:756–765. DOI: 10.1016/j.cgh.2021.02.008. PMID: 33549871.
72. Zilberstein N, Godbee M, Mehta NA, et al. Advanced endoscopic imaging for detection of Barrett’s esophagus. Clin Endosc. 2024; 57:1–10. DOI: 10.5946/ce.2023.031. PMID: 38178326.
73. Fitzgerald RC, di Pietro M, O’Donovan M, et al. Cytosponge-trefoil factor 3 versus usual care to identify Barrett’s oesophagus in a primary care setting: a multicentre, pragmatic, randomised controlled trial. Lancet. 2020; 396:333–344. DOI: 10.1016/s0140-6736(20)31099-0. PMID: 32738955.
74. Swart N, Maroni R, Muldrew B, et al. Economic evaluation of Cytosponge®-trefoil factor 3 for Barrett esophagus: a cost-utility analysis of randomised controlled trial data. EClinicalMedicine. 2021; 37:100969. DOI: 10.1016/j.eclinm.2021.100969. PMID: 34195582.
75. Iyer PG, Taylor WR, Slettedahl SW, et al. Validation of a methylated DNA marker panel for the nonendoscopic detection of Barrett’s esophagus in a multisite case-control study. Gastrointest Endosc. 2021; 94:498–505. DOI: 10.1016/j.gie.2021.03.937. PMID: 33857451.
76. Wang Z, Kambhampati Thiruvengadam S, Cheng Y, et al. Methylation biomarker panel performance in EsophaCap cytology samples for diagnosing Barrett’s esophagus: a prospective validation study. Clin Cancer Res. 2019; 25:2127–2135. DOI: 10.1158/1078-0432.ccr-18-3696. PMID: 30670490.
77. Ghosal A, Verma S, Le IT, et al. Analytical validation of a DNA methylation biomarker test for the diagnosis of Barrett’s esophagus and esophageal adenocarcinoma from samples collected using EsoCheck®, a non-endoscopic esophageal cell collection device. Diagnostics (Basel). 2024; 14:1784. DOI: 10.3390/diagnostics14161784. PMID: 39202271.
78. Saeian K, Staff DM, Vasilopoulos S, et al. Unsedated transnasal endoscopy accurately detects Barrett’s metaplasia and dysplasia. Gastrointest Endosc. 2002; 56:472–478. DOI: 10.1016/s0016-5107(02)70429-x. PMID: 12297760.
79. Chiam K, Wang T, Watson DI, et al. Circulating serum exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J Gastrointest Surg. 2015; 19:1208–1215. DOI: 10.1007/s11605-015-2829-9. PMID: 25943911.
80. Bus P, Kestens C, Ten Kate FJ, et al. Profiling of circulating microRNAs in patients with Barrett’s esophagus and esophageal adenocarcinoma. J Gastroenterol. 2016; 51:560–570. DOI: 10.1007/s00535-015-1133-5. PMID: 26585599.
81. Zhang Z, Curran G, Altinok Dindar D, et al. Insights into the oral microbiome and Barrett’s esophagus early detection: a narrative review. Clin Transl Gastroenterol. 2021; 12:e00390. DOI: 10.14309/ctg.0000000000000390. PMID: 34446641.
82. Chan DK, Zakko L, Visrodia KH, et al. Breath testing for Barrett’s esophagus using exhaled volatile organic compound profiling with an electronic nose device. Gastroenterology. 2017; 152:24–26. DOI: 10.1053/j.gastro.2016.11.001. PMID: 27825962.
83. Peters Y, Schrauwen RW, Tan AC, et al. Detection of Barrett’s oesophagus through exhaled breath using an electronic nose device. Gut. 2020; 69:1169–1172. DOI: 10.1136/gutjnl-2019-320273. PMID: 32098798.
Full Text Links
  • CE
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr