Ann Lab Med.  2025 Sep;45(5):539-544. 10.3343/alm.2024.0573.

Utility of ABO Genotyping by Integrating the ABO Gene into Diagnostic Gene Panels for Patients with Hematologic Malignancies

Affiliations
  • 1Department of Laboratory Medicine, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Korea
  • 2Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea

Abstract

Serologic ABO typing might be hampered in some patients with hematologic malignancies. We performed ABO genotyping using next-generation sequencing as part of a routine hematologic malignancy gene panel to determine the ABO blood type of patients with hematologic malignancies. Targeted sequencing of seven ABO gene exons was performed within a hematologic malignancy gene panel for 520 patients diagnosed with various hematologic malignancies. The distribution of predicted ABO blood phenotypes determined through genotyping was as follows: 33.3% A, 27.3% B, 26.7% O, and 12.7% AB. No significant associations were identified between ABO allele distributions and specific hematologic malignancy diagnoses. We compared the phenotypes predicted using ABO genotyping with serological ABO testing results in 502 samples where serological data were available. All genotyping-based phenotypes were accurate, with 99.8% (501/502) of initial serological results aligning with the true phenotypes. Unusual serological results were observed in 21 samples (4.2%). The percentages of recipient cells containing ABO allele variants indicated chimerism in relapsed patients who had undergone ABO-mismatched transplantation. Thus, incorporating ABO genotyping into the hematology gene panel provides valuable information offering a cost-effective approach to address challenges in blood typing and post-transplant care.

Keyword

ABO genotyping; Allele distribution; Next-generation sequencing

Reference

1. Lim YA, Park SJ, Cho HS. 2022; Investigation of discrepant ABO blood grouping results from an AutoAnalyzer. Ann Lab Med. 42:650–8. DOI: 10.3343/alm.2022.42.6.650. PMID: 35765873. PMCID: PMC9277040.
2. Booth GS, Gehrie EA, Bolan CD, Savani BN. 2013; Clinical guide to ABO-incompatible allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 19:1152–8. DOI: 10.1016/j.bbmt.2013.03.018. PMID: 23571461.
3. Hosoi E. 2008; Biological and clinical aspects of ABO blood group system. J Med Invest. 55:174–82. DOI: 10.2152/jmi.55.174. PMID: 18797129.
4. Zhong Y, Xu F, Wu J, Schubert J, Li MM. 2021; Application of next generation sequencing in laboratory medicine. Ann Lab Med. 41:25–43. DOI: 10.3343/alm.2021.41.1.25. PMID: 32829577. PMCID: PMC7443516.
5. Koo M, Song IC, Kim J, Kwon GC, Kim SY. 2023; Prognostic value of the mutation types and dynamics of FLT3-ITD in acute myeloid leukemia. Eur J Haematol. 111:562–72. DOI: 10.1111/ejh.14044. PMID: 37435718.
6. The International Society of Blood Transfusion. Names for ABO (ISBT 001) Blood Group Alleles. v1.1 171023. https://www.isbtweb.org/resource/001aboalleles.html. Updated on Oct 2017.
7. Bianco T, Farmer BJ, Sage RE, Dobrovic A. 2001; Loss of red cell A, B, and H antigens is frequent in myeloid malignancies. Blood. 97:3633–9. DOI: 10.1182/blood.V97.11.3633. PMID: 11369661.
8. Jeong IH, Seo JY, Choi S, Kim HY, Cho D. 2023; ABO blood group antigen changes in acute myeloid leukemia and no significant association with RUNX1 and GATA2 somatic variants. Ann Lab Med. 43:635–7. DOI: 10.3343/alm.2023.43.6.635. PMID: 37387499. PMCID: PMC10345170.
9. Giollo M, Minervini G, Scalzotto M, Leonardi E, Ferrari C, Tosatto SC. 2015; BOOGIE: predicting blood groups from high throughput sequencing data. PLoS One. 10:e0124579. DOI: 10.1371/journal.pone.0124579. PMID: 25893845. PMCID: PMC4404330. PMID: b6770cb925e54570a4bd6db36d5b2c4f.
10. Lane WJ, Westhoff CM, Uy JM, Aguad M, Smeland-Wagman R, Kaufman RM, et al. 2016; Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle. Transfusion. 56:743–54. DOI: 10.1111/trf.13416. PMID: 26634332. PMCID: PMC5019240.
11. Lang K, Wagner I, Schöne B, Schöfl G, Birkner K, Hofmann JA, et al. 2016; ABO allele-level frequency estimation based on population-scale genotyping by next generation sequencing. BMC Genomics. 17:374. DOI: 10.1186/s12864-016-2687-1. PMID: 27207383. PMCID: PMC4874024.
12. Möller M, Jöud M, Storry JR, Olsson ML. 2016; Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project. Blood Adv. 1:240–9. DOI: 10.1182/bloodadvances.2016001867. PMID: 29296939. PMCID: PMC5737168. PMID: 18f54d147b4c4e67a7c19efdc02849aa.
13. He Y, Hong X, Zhang J, He J, Zhu F, Huang H. 2022; Analysis of the genomic sequence of ABO allele using next-generation sequencing method. Front Immunol. 13:814263. DOI: 10.3389/fimmu.2022.814263. PMID: 35874750. PMCID: PMC9298404. PMID: e66c5e4e258040d7997c0196e092ec63.
14. Kim TY, Yu H, Phan MTT, Jang JH, Cho D. 2022; Application of blood group genotyping by next-generation sequencing in various immunohaematology cases. Transfus Med Hemother. 49:88–96. DOI: 10.1159/000517565. PMID: 35611383. PMCID: PMC9082207.
15. Wenk RE, Chiafari PA. 1997; DNA typing of recipient blood after massive transfusion. Transfusion. 37:1108–10. DOI: 10.1046/j.1537-2995.1997.37111298088037.x. PMID: 9426631.
16. Lane WJ, Vege S, Mah HH, Lomas-Francis C, Aguad M, Smeland-Wagman R, et al. 2019; Automated typing of red blood cell and platelet antigens from whole exome sequences. Transfusion. 59:3253–63. DOI: 10.1111/trf.15473. PMID: 31392742.
17. Andrikovics H, Őrfi Z, Meggyesi N, Bors A, Varga L, Kövy P, et al. 2019; Current trends in applications of circulatory microchimerism detection in transplantation. Int J Mol Sci. 20:4450. DOI: 10.3390/ijms20184450. PMID: 31509957. PMCID: PMC6769866.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr