Korean J Orthod.  2024 Nov;54(6):392-402. 10.4041/kjod24.109.

Factors affecting external apical root resorption of maxillary incisors associated with microimplantassisted rapid palatal expansion

Affiliations
  • 1Department of Orthodontics, College of Dentistry, Dankook University, Cheonan, Korea

Abstract


Objective
To measure and compare the extent of root resorption in the maxillary incisors following microimplant-assisted rapid palatal expansion (MARPE) and to identify risk factors of root resorption after expansion.
Methods
Cone-beam computed tomography images were obtained from a total of 60 patients both before expansion (T1) and 3 to 6 months after expansion (T2). Measurements taken included tooth length, root length, crown length and center of resistance. Resorption length (RL) and resorption length percentage (RLp), resorption volume (RV) and resorption volume percentage (RVp) and the amount of expansion were calculated.
Results
A significant difference in tooth length and volume was observed in both the central and lateral incisors before and after expansion. The resorption index (RL, RLp, RV, RVp) was significantly higher in the central incisors than in the lateral incisor. There was a significant correlation between several factors: age and RLp of the central incisors, the amount of expansion and RVp of the central incisors, tooth length of the central incisors and RL, RLp of the central incisors, root/crown ratio of the central incisors and RL of the central incisors, as well as tooth length of the lateral incisors and the RL of the lateral incisors.
Conclusions
Significant root resorption occurs in maxillary incisors following MARPE, with central incisors root resorption being significantly higher than lateral incisors. Key risk factors for root resorption after MARPE include advanced age, a larger amount of expansion, initial tooth length, and a root/crown ratio.

Keyword

Expansion; Root resorption; Computed tomography; Microimplant

Figure

  • Figure 1 Re-orientation. A, Axial view: the reticle is set to pass through the widest part of the incisor’s buccolingual and mesiodistal regions. B, Coronal view: the reticle is set to pass through the apex and midpoint of incisal edge. C, Sagittal view: measurements were performed. L, tooth length; r, root length; c, crown length.

  • Figure 2 Measurement of center of resistance (Cre) by connecting the first molars’ bifurcation point before (A) and after (B) microimplant-assisted rapid palatal expansion. The Frankfort Horizontal plane was used as the horizontal reference plane. The amount of expansion was defined as the difference in Cre measured between T1 and T2 period.

  • Figure 3 Measurement of tooth volume (V) by InVivo Dental 5 software.

  • Figure 4 Pearson correlation scatterplot. The scatterplot shows a positive coefficient, which indicates that as age increases, the resorption length percentage of the central incisors (RLp1) increases.

  • Figure 5 Pearson correlation scatterplot. The scatterplot shows a positive coefficient, which indicates that as the amount of expansion (E) increases, the resorption volume percentage of the central incisors (RVp1) increases.

  • Figure 6 Pearson correlation scatterplot. The scatterplot shows a positive coefficient, which indicates that the longer the initial central incisor tooth length (L1), the greater the resorption length of the central incisor (RL1) and resorption length percentage of the central incisors (RLp1).

  • Figure 7 Pearson correlation scatterplot. Scatterplot shows a positive coefficient, which indicates that the higher the root/crown ratio of the initial central incisor (R1), the greater the resorption length of the central incisor (RL1).

  • Figure 8 Pearson correlation scatterplot. Scatterplot shows a positive coefficient, which indicates that the longer the initial lateral incisor tooth length (L2), the greater the resorption length of the lateral incisors (RL2).

  • Figure 9 Comparison of tipping movement and center of resistance (red dots) change between before and after root resorption. A, In normal central incisors, the force of the transseptal fibers (red lines) is applied relatively coronal to the center of resistance, causing crown mesial tipping and root distal tipping movement. B, When root resorption occurs, the center of resistance moves to the coronal side. Consequently, the force of the transseptal fibers is applied relatively more apically to the center of resistance, reducing crown mesial tipping and root distal tipping movement.


Reference

1. Park JY. 2006. Treatment effects of miniscrew assisted rapid palatal expansion in young adults [Master's thesis]. Yonsei University;Seoul: https://ir.ymlib.yonsei.ac.kr/handle/22282913/123172.
2. Forst D, Nijjar S, Khaled Y, Lagravere M, Flores-Mir C. 2014; Radiographic assessment of external root resorption associated with jackscrew-based maxillary expansion therapies: a systematic review. Eur J Orthod. 36:576–85. https://doi.org/10.1093/ejo/cjt090. DOI: 10.1093/ejo/cjt090. PMID: 24355871.
3. Blake M, Woodside DG, Pharoah MJ. 1995; A radiographic comparison of apical root resorption after orthodontic treatment with the edgewise and Speed appliances. Am J Orthod Dentofacial Orthop. 108:76–84. https://doi.org/10.1016/s0889-5406(95)70069-2. DOI: 10.1016/S0889-5406(95)70069-2. PMID: 7598108.
4. Chung DH, Park YG, Kim KW, Cha KS. 2011; Factors affecting orthodontically induced root resorption of maxillary central incisors in the Korean population. Korean J Orthod. 41:174–83. https://doi.org/10.4041/kjod.2011.41.3.174. DOI: 10.4041/kjod.2011.41.3.174.
5. Sameshima GT, Sinclair PM. 2001; Predicting and preventing root resorption: part I. diagnostic factors. Am J Orthod Dentofacial Orthop. 119:505–10. https://doi.org/10.1067/mod.2001.113409. DOI: 10.1067/mod.2001.113409. PMID: 11343022.
6. Sameshima GT, Sinclair PM. 2004; Characteristics of patients with severe root resorption. Orthod Craniofac Res. 7:108–14. https://doi.org/10.1111/j.1601-6343.2004.00284.x. DOI: 10.1111/j.1601-6343.2004.00284.x. PMID: 15180089.
7. Baumrind S, Korn EL, Boyd RL. 1996; Apical root resorption in orthodontically treated adults. Am J Orthod Dentofacial Orthop. 110:311–20. https://doi.org/10.1016/s0889-5406(96)80016-3. DOI: 10.1016/S0889-5406(96)80016-3. PMID: 8814033.
8. Harris EF, Kineret SE, Tolley EA. 1997; A heritable component for external apical root resorption in patients treated orthodontically. Am J Orthod Dentofacial Orthop. 111:301–9. https://doi.org/10.1016/s0889-5406(97)70189-6. DOI: 10.1016/S0889-5406(97)70189-6. PMID: 9082853.
9. Hendrix I, Carels C, Kuijpers-Jagtman AM, Van THM. 1994; A radiographic study of posterior apical root resorption in orthodontic patients. Am J Orthod Dentofacial Orthop. 105:345–9. https://doi.org/10.1016/s0889-5406(94)70128-8. DOI: 10.1016/S0889-5406(94)70128-8. PMID: 8154459.
10. Harris EF, Baker WC. 1990; Loss of root length and crestal bone height before and during treatment in adolescent and adult orthodontic patients. Am J Orthod Dentofacial Orthop. 98:463–9. https://doi.org/10.1016/s0889-5406(05)81656-7. DOI: 10.1016/S0889-5406(05)81656-7. PMID: 2239846.
11. Owman-Moll P, Kurol J, Lundgren D. 1995; Repair of orthodontically induced root resorption in adolescents. Angle Orthod. 65:403–8. discussion 409–10. https://doi.org/10.1043/0003-3219(1995)065<0403:Rooirr>2.0.Co;2.
12. Owman-Moll P, Kurol J. 1998; The early reparative process of orthodontically induced root resorption in adolescents - location and type of tissue. Eur J Orthod. 20:727–32. https://doi.org/10.1093/ejo/20.6.727. DOI: 10.1093/ejo/20.6.727. PMID: 9926640.
13. Costopoulos G, Nanda R. 1996; An evaluation of root resorption incident to orthodontic intrusion. Am J Orthod Dentofacial Orthop. 109:543–8. https://doi.org/10.1016/s0889-5406(96)70140-3. DOI: 10.1016/S0889-5406(96)70140-3. PMID: 8638600.
14. Kim SC. 1994; A study on the affecting factors on root resorption. Korean J Orthod. 24:649–58. https://koreamed.org/SearchBasic.php?RID=1676647.
15. Mirabella AD, Artun J. 1995; Prevalence and severity of apical root resorption of maxillary anterior teeth in adult orthodontic patients. Eur J Orthod. 17:93–9. https://doi.org/10.1093/ejo/17.2.93. DOI: 10.1093/ejo/17.2.93. PMID: 7781726.
16. Linge BO, Linge L. 1983; Apical root resorption in upper anterior teeth. Eur J Orthod. 5:173–83. https://doi.org/10.1093/ejo/5.3.173. DOI: 10.1093/ejo/5.3.173. PMID: 6578039.
17. Phillips JR. 1955; Apical root resorption under orthodontic therapy. Angle Orthod. 25:1–22. https://doi.org/10.1043/0003-3219(1955)025<0001:Arruot>2.0.Co;2.
18. Schour I, Massler M. 1941; The development of the human dentition. J Am Dent Assoc. 28:1153–60. https://els-jbs-prod-cdn.jbs.elsevierhealth.com/pb/assets/raw/Health%20Advance/journals/adaj/JADACentennialAprilSchour1941.pdf.
19. Picanço GV, de Freitas KM, Cançado RH, Valarelli FP, Picanço PR, Feijão CP. 2013; Predisposing factors to severe external root resorption associated to orthodontic treatment. Dental Press J Orthod. 18:110–20. https://doi.org/10.1590/s2176-94512013000100022. DOI: 10.1590/S2176-94512013000100022. PMID: 23876958.
20. McFadden WM, Engstrom C, Engstrom H, Anholm JM. 1989; A study of the relationship between incisor intrusion and root shortening. Am J Orthod Dentofacial Orthop. 96:390–6. https://doi.org/10.1016/0889-5406(89)90323-5. DOI: 10.1016/0889-5406(89)90323-5. PMID: 2683733.
21. Newman WG. 1975; Possible etiologic factors in external root resorption. Am J Orthod. 67:522–39. https://doi.org/10.1016/0002-9416(75)90298-5. DOI: 10.1016/0002-9416(75)90298-5. PMID: 164774.
22. Fernandes LQP, Figueiredo NC, Montalvany Antonucci CC, Lages EMB, Andrade I Jr, Capelli Junior J. 2019; Predisposing factors for external apical root resorption associated with orthodontic treatment. Korean J Orthod. 49:310–8. https://doi.org/10.4041/kjod.2019.49.5.310. DOI: 10.4041/kjod.2019.49.5.310. PMID: 31598487. PMCID: PMC6769259.
23. Weltman B, Vig KW, Fields HW, Shanker S, Kaizar EE. 2010; Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthod Dentofacial Orthop. 137:462–76. discussion 12Ahttps://doi.org/10.1016/j.ajodo.2009.06.021. DOI: 10.1016/j.ajodo.2009.06.021. PMID: 20362905.
24. Mirabella AD, Artun J. 1995; Risk factors for apical root resorption of maxillary anterior teeth in adult orthodontic patients. Am J Orthod Dentofacial Orthop. 108:48–55. https://doi.org/10.1016/s0889-5406(95)70065-x. DOI: 10.1016/S0889-5406(95)70065-X. PMID: 7598104.
25. Jung YH, Cho BH. 2011; External root resorption after orthodontic treatment: a study of contributing factors. Imaging Sci Dent. 41:17–21. https://doi.org/10.5624/isd.2011.41.1.17. DOI: 10.5624/isd.2011.41.1.17. PMID: 21977469. PMCID: PMC3174460.
26. Hemley S. 1941; The incidence of root resorption of vital permanent teeth. J Dent Res. 20:133–41. https://doi.org/10.1177/00220345410200020501. DOI: 10.1177/00220345410200020501.
27. Sharpe W, Reed B, Subtelny JD, Polson A. 1987; Orthodontic relapse, apical root resorption, and crestal alveolar bone levels. Am J Orthod Dentofacial Orthop. 91:252–8. https://doi.org/10.1016/0889-5406(87)90455-0. DOI: 10.1016/0889-5406(87)90455-0. PMID: 3469910.
28. de Freitas JC, Lyra OC, de Alencar AH, Estrela C. 2013; Long-term evaluation of apical root resorption after orthodontic treatment using periapical radiography and cone beam computed tomography. Dental Press J Orthod. 18:104–12. https://doi.org/10.1590/s2176-94512013000400015. DOI: 10.1590/S2176-94512013000400015. PMID: 24262423. PMID: cbf15457b0c74ccfa7b208cfa25bb358.
29. Nanekrungsan K, Patanaporn V, Janhom A, Korwanich N. 2012; External apical root resorption in maxillary incisors in orthodontic patients: associated factors and radiographic evaluation. Imaging Sci Dent. 42:147–54. https://doi.org/10.5624/isd.2012.42.3.147. DOI: 10.5624/isd.2012.42.3.147. PMID: 23071964. PMCID: PMC3465756.
30. Brin I, Tulloch JF, Koroluk L, Philips C. 2003; External apical root resorption in Class II malocclusion: a retrospective review of 1- versus 2-phase treatment. Am J Orthod Dentofacial Orthop. 124:151–6. https://doi.org/10.1016/s0889-5406(03)00166-5. DOI: 10.1016/S0889-5406(03)00166-5. PMID: 12923510.
31. Puttaravuttiporn P, Wongsuwanlert M, Charoemratrote C, Leethanakul C. 2018; Volumetric evaluation of root resorption on the upper incisors using cone beam computed tomography after 1 year of orthodontic treatment in adult patients with marginal bone loss. Angle Orthod. 88:710–8. https://doi.org/10.2319/121717-868.1. DOI: 10.2319/121717-868.1. PMID: 29911905. PMCID: PMC8174063.
32. Langford SR, Sims MR. 1982; Root surface resorption, repair, and periodontal attachment following rapid maxillary expansion in man. Am J Orthod. 81:108–15. (82)90034-3. DOI: 10.1016/0002-9416(82)90034-3. PMID: 6758592.
33. Barber AF, Sims MR. 1981; Rapid maxillary expansion and external root resorption in man: a scanning electron microscope study. Am J Orthod. 79:630–52. https://doi.org/10.1016/0002-9416(81)90356-0. DOI: 10.1016/0002-9416(81)90356-0. PMID: 7015868.
34. Baysal A, Karadede I, Hekimoglu S, Ucar F, Ozer T, Veli I, et al. 2012; Evaluation of root resorption following rapid maxillary expansion using cone-beam computed tomography. Angle Orthod. 82:488–94. https://doi.org/10.2319/060411-367.1. DOI: 10.2319/060411-367.1. PMID: 21843038. PMCID: PMC8865819.
35. Leonardi R, Ronsivalle V, Barbato E, Lagravère M, Flores-Mir C, Lo Giudice A. 2022; External root resorption (ERR) and rapid maxillary expansion (RME) at post-retention stage: a comparison between tooth-borne and bone-borne RME. Prog Orthod. 23:45. https://doi.org/10.1186/s40510-022-00439-y. DOI: 10.1186/s40510-022-00439-y. PMID: 36464753. PMCID: PMC9719874. PMID: e4d7a8dcfb1a4a27bbe35a5cd7cfeec4.
36. Lam R, Naoum S, Abbott P, Goonewardene MS. 2022; The impact of mini-implant hybrid hyrax maxillary expansion on pulp blood flow and sensibility in healthy and traumatized teeth: a prospective study. Am J Orthod Dentofacial Orthop. 162:247–56. https://doi.org/10.1016/j.ajodo.2021.03.028. DOI: 10.1016/j.ajodo.2021.03.028. PMID: 35534401.
37. Vardimon AD, Levy T, Weinreb M. 2005; Maxillary incisor root resorption after rapid palatal expansion in Felis catus. Eur J Oral Sci. 113:41–6. https://doi.org/10.1111/j.1600-0722.2004.00175.x. DOI: 10.1111/j.1600-0722.2004.00175.x. PMID: 15693828.
38. Jose AR, Shetty NK, Shalu S, Prasad KA, Susan TC, Shetty SS. 2023; Quantitative assessment of root resorption in TAD-aided anchorage with and without RAP: a CBCT study on en masse retraction cases. J Orthod Sci. 12:49. https://doi.org/10.4103/jos.jos_14_23. DOI: 10.4103/jos.jos_14_23. PMID: 37881668. PMCID: PMC10597373.
39. Kjaer I. 1995; Morphological characteristics of dentitions developing excessive root resorption during orthodontic treatment. Eur J Orthod. 17:25–34. https://doi.org/10.1093/ejo/17.1.25. DOI: 10.1093/ejo/17.1.25. PMID: 7737342.
40. Nanda R. 2005. Biomechanics and esthetic strategies in clinical orthodontics. Saunders;St. Louis: https://doi.org/10.1016/C2009-0-54720-4. DOI: 10.1016/C2009-0-54720-4.
41. Bartold PM, Narayanan AS. 1998. Biology of the periodontal connective tissues. Quintessence Pub Co.;Chicago: https://search.worldcat.org/ko/title/38936630. DOI: 10.1016/s0278-2391(99)90106-4.
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr