Clin Exp Otorhinolaryngol.  2023 May;16(2):99-114. 10.21053/ceo.2022.01319.

Research Progress on Non-coding RNAs in Cholesteatoma of the Middle Ear

Affiliations
  • 1Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China

Abstract

Cholesteatoma of the middle ear is a common disease in otolaryngology that is receiving increasing attention. It is estimated that over five million people around the world have suffered from middle ear cholesteatoma. The annual incidence of middle ear cholesteatoma has been reported to be 9.2 per 100,000 in adults and 3 per 100,000 in children. Without timely discovery and intervention, cholesteatomas can become perilously large and damage intratemporal structures, causing various intracranial and extracranial complications. No practical nonsurgical treatments are currently available. Although multiple hypotheses exist, research directions have consistently focused on cell proliferation, apoptosis, and bone destruction. Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), have recently received increasing attention because of their key roles in gene expression, cell cycle regulation, and the development of many diseases. Although ncRNAs are not involved in protein translation, they are abundant in the genome, with only approximately 2% of genes encoding proteins and the remaining approximately 98% encoding ncRNAs. The purpose of this review is to summarize the current state of knowledge regarding the specific role of ncRNAs in middle ear cholesteatoma.

Keyword

Cholesteatoma of the Middle Ear; CircRNA; MicroRNA; Non-coding RNA

Figure

  • Fig. 1 Summary of the main miRNA and molecular mechanisms involved in middle ear cholesteatoma. (A) miR-34a inhibits the proliferation and migration of cholesteatoma cells, promotes the apoptosis of cholesteatoma cells by targeting Bcl-2, Cdk6, cyclin D1, and negatively regulates the PTEN/PI3K/AKT signaling pathway. (B) miR-21, which is a downstream target of CD14, IL-6R, gp130, and STAT3, promotes proliferation and invasion and inhibits apoptosis in cholesteatoma cells by negatively regulating PTEN, PDCD4 and HMGA2. (C) miR-let-7a inhibits cholesteatoma cell proliferation and invasion and promotes their apoptosis, and this biological function might be achieved by negatively regulating miR-21 expression. (D) miR-203a affects p-Akt levels by targeting Bmi1; promoting cholesteatoma proliferation, colony formation, and migration; and inhibiting apoptosis. (E) miR-21-3p and miR-16-1-3p expression are significantly elevated in middle ear cholesteatoma tissues, whereas miR-10a-5p expression is significantly decreased. It is hypothesized that miR-16-1-3p and miRNA-10a-5p might induce cholesteatoma tissue hyperproliferation and regulate cholesteatoma formation through the PI3K-Akt signaling pathway. (F) NF-κB activation by TNF-α, IL-1β, and IL-6 during the development and progression of middle ear cholesteatoma increases miR-802 expression, which in turn promotes cell proliferation, and this is accomplished by downregulating the PTEN/p-AKT pathway. (G) miR-142-5p has a direct negative regulatory effect on CDK5, which is involved in regulating the secretion of inflammatory cytokines, such as TNF-α, TGF-β1, IL-5, IL-6, and IL-17A, in cholesteatomas. (H) Downregulation of exosomal miR-106b-5p derived from cholesteatoma perimatrix fibroblasts promotes angiogenesis via Angpt2 overexpression. miR, microRNA; PTEN, phosphatase and tensin homolog deleted on chromosome 10; PI3K, phosphoinositide 3-kinase; p-Akt, phosphorylated protein kinase B; Bcl-2, B-cell lymphoma-2; Cdk6, cyclin-dependent kinases 6; IL-6R, interleukin 6 receptor; CD14, lipopolysaccharide 14; STAT3, signal transducer and activator of transcription 3; gp130, glycoprotein 130; PDCD4, programmed cell death protein 4; HMGA2, high mobility group AT-hook 2; Bmi1, B cell-specific Moloney murine leukemia virus insertion site 1; TNF, tumor necrosis factor; IL, interleukin; NF-κB, nuclear factor kappa B; CDK5, cyclin-dependent kinase 5; TGF, transforming growth factor; miRNA, microRNA; Angpt2, angiopoietin 2.

  • Fig. 2 Summary of the main circRNA/lncRNA and molecular mechanisms involved in middle ear cholesteatoma. (A) hsa_circRNA_104327 and hsa_circRNA_404655 expression is significantly higher and hsa_circRNA_000319 expression is significantly lower in middle ear cholesteatoma than in normal skin tissue. These circRNAs have been found to interact with miRNA-152-5p, miRNA-3664-3p, and miRNA-4436b-5p, respectively, according to the ceRNA hypothesis. (B) hsa_circ_0074491 plays a key role in facilitating cell proliferation, migration, and invasion and repressing cell apoptosis in cholesteatoma through inactivating the PI3K/Akt pathway via competitively binding to miR-22-3p and miR-125a-5p. (C) hsa-circRNA-101458 expression has been confirmed to be significantly lower in cholesteatoma than in epithelial tissues. It could inhibit proliferation by competitively interacting with miR let-7a-3p according to ceRNA network prediction analysis. (D) hsa-circRNA-102747 has been verified to be significantly lower in cholesteatoma by qRT-PCR. According to one hypothesis, circRNA-102747/lncRNA-uc001kfc.1/miR-21-3p/targeted mRNAs might regulate malignant characteristics according to ceRNA network prediction analysis. (E) lncRNA-uc001kfc.1 expression has been confirmed to be significantly lower in cholesteatoma tissues. It is predicted that lncRNA-uc001kfc.1 could regulate the expression of major nodal proteins of the JAK/STAT pathway through miR-21 to alter the proliferative and invasive behavior of cholesteatoma cells. (F) Expression levels of the HOTAIR lncRNA in cholesteatoma tissues are significantly upregulated compared to that in outer ear canal skin tissue. circRNA, circular RNA; miRNA, microRNA; PI3K, phosphoinositide 3-kinase; p-Akt, phosphorylated protein kinase B; PTEN, phosphatase and tensin homolog deleted on chromosome 10; PDCD4, programmed cell death protein 4; HMGA2, high mobility group AT-hook 2; lncRNA, long ncRNA; JAK, Janus kinase; STAT, signal transducer and activator of transcription; ceRNA, competing endogenous RNA; qRT-PCR, quantitative real-time polymerase chain reaction.


Reference

1. Luntz M, Barzilai R. Middle ear cholesteatoma. Harefuah. 2021; May. 160(5):316–22.
2. Rutkowska J, Ozgirgin N, Olszewska E. Cholesteatoma definition and classification: a literature review. J Int Adv Otol. 2017; Aug. 13(2):266–71.
Article
3. Castle JT. Cholesteatoma pearls: practical points and update. Head Neck Pathol. 2018; Sep. 12(3):419–29.
Article
4. Maniu A, Harabagiu O, Perde Schrepler M, Catana A, Fanuta B, Mogoanta CA. Molecular biology of cholesteatoma. Rom J Morphol Embryol. 2014; 55(1):7–13.
5. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006; Apr. 15. (Spec 1):R17–29.
Article
6. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011; Apr. 12(4):246–58.
Article
7. Park JL, Lee YS, Kunkeaw N, Kim SY, Kim IH, Lee YS. Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics. 2017; Feb. 9(2):171–87.
Article
8. Panni S, Lovering RC, Porras P, Orchard S. Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech. 2020; Jun. 1863(6):194417.
Article
9. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; Jan. 116(2):281–97.
10. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell. 2005; Mar. 120(5):623–34.
11. Budakoti M, Panwar AS, Molpa D, Singh RK, Busselberg D, Mishra AP, et al. Micro-RNA: the darkhorse of cancer. Cell Signal. 2021; Jul. 83:109995.
Article
12. Yeo JH, Chong MM. Many routes to a micro RNA. IUBMB Life. 2011; Nov. 63(11):972–8.
Article
13. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011; Sep. 43(6):904–14.
Article
14. Bai Y, Dai X, Harrison AP, Chen M. RNA regulatory networks in animals and plants: a long noncoding RNA perspective. Brief Funct Genomics. 2015; Mar. 14(2):91–101.
Article
15. Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA. 2014; Dec. 20(12):1829–42.
Article
16. Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015; Apr. 12(4):381–8.
Article
17. Liang ZZ, Guo C, Zou MM, Meng P, Zhang TT. circRNA-miRNA-mRNA regulatory network in human lung cancer: an update. Cancer Cell Int. 2020; May. 20:173.
Article
18. He YD, Tao W, He T, Wang BY, Tang XM, Zhang LM, et al. A urine extracellular vesicle circRNA classifier for detection of high-grade prostate cancer in patients with prostate-specific antigen 2–10 ng/mL at initial biopsy. Mol Cancer. 2021; Jul. 20(1):96.
19. Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res. 2020; Jan. 98(1):87–97.
Article
20. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011; Aug. 146(3):353–8.
Article
21. Zhang J, Liu L, Xu T, Zhang W, Li J, Rao N, et al. Time to infer miRNA sponge modules. Wiley Interdiscip Rev RNA. 2022; Mar. 13(2):e1686.
Article
22. Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018; Apr. 141(4):1202–7.
Article
23. Croset M, Pantano F, Kan CW, Bonnelye E, Descotes F, Alix-Panabieres C, et al. miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Res. 2018; Sep. 78(18):5259–73.
Article
24. Liao Z, Chen Y, Duan C, Zhu K, Huang R, Zhao H, et al. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics. 2021; Jan. 11(1):268–91.
Article
25. Kanlikilicer P, Bayraktar R, Denizli M, Rashed MH, Ivan C, Aslan B, et al. Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine. 2018; Dec. 38:100–12.
Article
26. Xu J, Li Y, Lu J, Pan T, Ding N, Wang Z, et al. The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. Nucleic Acids Res. 2015; Sep. 43(17):8169–82.
Article
27. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011; Oct. 147(2):344–57.
Article
28. Zheng H, Wang W, Li S, Han L. The effect of Zbxz23ir-21 NANO (nanomaterials) delivery vector on apoptosis and PTEN(phosphatase and tensin homolog deleted on chromosome ten)/PI3K(Intracellular phosphatidylinositol kinase)/AKT(related to the A and C kinase) in children with cholesteatoma in middle ear. Bioengineered. 2021; Dec. 12(1):8809–21.
Article
29. Friedland DR, Eernisse R, Erbe C, Gupta N, Cioffi JA. Cholesteatoma growth and proliferation: posttranscriptional regulation by microRNA-21. Otol Neurotol. 2009; Oct. 30(7):998–1005.
30. Chen X, Li X, Qin Z. MicroRNA-21 promotes the proliferation and invasion of cholesteatoma keratinocytes. Acta Otolaryngol. 2016; Dec. 136(12):1261–6.
Article
31. Li Y, Liang J, Hu J, Ren X, Sheng Y. Down-regulation of exosomal miR-106b-5p derived from cholesteatoma perimatrix fibroblasts promotes angiogenesis in endothelial cells by overexpression of Angiopoietin 2. Cell Biol Int. 2018; Sep. 42(10):1300–10.
Article
32. Zang J, Hui L, Yang N, Yang B, Jiang X. Downregulation of MiR-203a disinhibits Bmi1 and promotes growth and proliferation of keratinocytes in cholesteatoma. Int J Med Sci. 2018; Mar. 15(5):447–55.
Article
33. Xie S, Liu X, Pan Z, Chen X, Peng A, Yin T, et al. Microarray analysis of differentially-expressed microRNAs in acquired middle ear cholesteatoma. Int J Med Sci. 2018; Oct. 15(13):1547–54.
Article
34. Zhang W, Chen X, Qin Z. MicroRNA let-7a suppresses the growth and invasion of cholesteatoma keratinocytes. Mol Med Rep. 2015; Mar. 11(3):2097–103.
Article
35. Chen X, Qin Z. Post-transcriptional regulation by microRNA-21 and let-7a microRNA in paediatric cholesteatoma. J Int Med Res. 2011; 39(6):2110–8.
Article
36. Li N, Qin ZB. Inflammation-induced miR-802 promotes cell proliferation in cholesteatoma. Biotechnol Lett. 2014; Sep. 36(9):1753–9.
Article
37. Sui R, Shi W, Han S, Fan X, Zhang X, Wang N, et al. MiR-142-5p directly targets cyclin-dependent kinase 5-mediated upregulation of the inflammatory process in acquired middle ear cholesteatoma. Mol Immunol. 2022; Jan. 141:236–45.
Article
38. Li Q, Wang HQ, Chen YQ, Xiong S, Zeng L. Study of long non-coding RNA HOTAIR expression in middle ear cholesteatoma. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017; Feb. 31(4):250–3.
39. Gao J, Tang Q, Zhu X, Wang S, Zhang Y, Liu W, et al. Long noncoding RNAs show differential expression profiles and display ceRNA potential in cholesteatoma pathogenesis. Oncol Rep. 2018; May. 39(5):2091–100.
Article
40. Hu Y, Qian X. Hsa_circ_0074491 regulates the malignance of cholesteatoma keratinocytes by modulating the PI3K/Akt pathway by binding to miR-22-3p and miR-125a-5p: an observational study. Medicine (Baltimore). 2021; Sep. 100(37):e27122.
41. Xie S, Jin L, Yin T, Ren J, Liu W. Microarray analysis and functional prediction of differentially expressed circular RNAs in acquired middle ear cholesteatoma. Biomed Eng Online. 2021; Dec. 20(1):129.
Article
42. Gao J, Tang Q, Xue R, Zhu X, Wang S, Zhang Y, et al. Comprehensive circular RNA expression profiling with associated ceRNA network reveals their therapeutic potential in cholesteatoma. Oncol Rep. 2020; Apr. 43(4):1234–44.
Article
43. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; Dec. 75(5):843–54.
Article
44. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004; Nov. 432(7014):231–5.
Article
45. Glaich O, Parikh S, Bell RE, Mekahel K, Donyo M, Leader Y, et al. DNA methylation directs microRNA biogenesis in mammalian cells. Nat Commun. 2019; Dec. 10(1):5657.
Article
46. Leclercq M, Diallo AB, Blanchette M. Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Res. 2013; Aug. 41(15):7200–11.
Article
47. Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019; Jan. 20(1):5–20.
Article
48. Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science. 2007; Sep. 317(5845):1764–7.
Article
49. Rebane A, Akdis CA. MicroRNAs: essential players in the regulation of inflammation. J Allergy Clin Immunol. 2013; Jul. 132(1):15–26.
Article
50. Amador-Canizares Y, Panigrahi M, Huys A, Kunden RD, Adams HM, Schinold MJ, et al. miR-122, small RNA annealing and sequence mutations alter the predicted structure of the Hepatitis C virus 5′ UTR RNA to stabilize and promote viral RNA accumulation. Nucleic Acids Res. 2018; Oct. 46(18):9776–92.
Article
51. Lee I, Ajay SS, Yook JI, Kim HS, Hong SH, Kim NH, et al. New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res. 2009; Jul. 19(7):1175–83.
Article
52. Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008; May. 30(4):460–71.
Article
53. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016; Jan. 17(1):47–62.
Article
54. Kaessmann H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 2010; Oct. 20(10):1313–26.
Article
55. Fedoseyeva V, Zharinova I, Alexandrov A. Secondary structure-stretched forms of long intron RNA products from the view point of initiation of chromosome homologs somatic pairing. J Biomol Struct Dyn. 2015; 33(4):869–76.
Article
56. Zucchelli S, Cotella D, Takahashi H, Carrieri C, Cimatti L, Fasolo F, et al. SINEUPs: a new class of natural and synthetic antisense long non-coding RNAs that activate translation. RNA Biol. 2015; Aug. 12(8):771–9.
Article
57. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018; Jan. 172(3):393–407.
Article
58. Jin JJ, Lv W, Xia P, Xu ZY, Zheng AD, Wang XJ, et al. Long noncoding RNA SYISL regulates myogenesis by interacting with polycomb repressive complex 2. Proc Natl Acad Sci U S A. 2018; Oct. 115(42):E9802–11.
59. Mathy NW, Burleigh O, Kochvar A, Whiteford ER, Behrens M, Marta P, et al. A novel long intergenic non-coding RNA, Nostrill, regulates iNOS gene transcription and neurotoxicity in microglia. J Neuroinflammation. 2021; Jan. 18(1):16.
Article
60. Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013; Oct. 339(2):159–66.
Article
61. Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics. 2017; Jun. 15(3):177–86.
Article
62. Sun Q, Hao Q, Prasanth KV. Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet. 2018; Feb. 34(2):142–57.
Article
63. Hainer SJ, Pruneski JA, Mitchell RD, Monteverde RM, Martens JA. Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev. 2011; Jan. 25(1):29–40.
Article
64. McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015; May. 521(7551):232–6.
Article
65. Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016; Nov. 539(7629):452–5.
Article
66. Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, et al. LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov. 2016; Jul. 6(7):784–801.
Article
67. Huang W, Li H, Yu Q, Xiao W, Wang DO. LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond. J Exp Clin Cancer Res. 2022; Mar. 41(1):100.
Article
68. Wen Z, Lian L, Ding H, Hu Y, Xiao Z, Xiong K, et al. LncRNA ANCR promotes hepatocellular carcinoma metastasis through upregulating HNRNPA1 expression. RNA Biol. 2020; Mar. 17(3):381–94.
Article
69. Wu SK, Roberts JT, Balas MM, Johnson AM. RNA matchmaking in chromatin regulation. Biochem Soc Trans. 2020; Dec. 48(6):2467–81.
Article
70. Yu B, Qi Y, Li R, Shi Q, Satpathy AT, Chang HY. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell. 2021; Apr. 184(7):1790–803.
Article
71. Wan G, Hu X, Liu Y, Han C, Sood AK, Calin GA, et al. A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J. 2013; Oct. 32(21):2833–47.
Article
72. Guil S, Esteller M. RNA-RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem Sci. 2015; May. 40(5):248–56.
Article
73. Erdmann VA, Barciszewska MZ, Hochberg A, de Groot N, Barciszewski J. Regulatory RNAs. Cell Mol Life Sci. 2001; Jun. 58(7):960–77.
Article
74. Cui M, Zheng M, Sun B, Wang Y, Ye L, Zhang X. A long noncoding RNA perturbs the circadian rhythm of hepatoma cells to facilitate hepatocarcinogenesis. Neoplasia. 2015; Jan. 17(1):79–88.
Article
75. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976; Nov. 73(11):3852–673.
Article
76. Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979; Jul. 280(5720):339–40.
Article
77. Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993; Jan. 7(1):155–60.
Article
78. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013; Mar. 495(7441):333–8.
Article
79. Mehta SL, Dempsey RJ, Vemuganti R. Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol. 2020; Mar. 186:101746.
Article
80. Liu X, Hu Z, Zhou J, Tian C, Tian G, He M, et al. Interior circular RNA. RNA Biol. 2020; Jan. 17(1):87–97.
Article
81. Kristensen LS, Andersen MS, Stagsted LV, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019; Nov. 20(11):675–91.
Article
82. Li J, Xu Q, Huang ZJ, Mao N, Lin ZT, Cheng L, et al. CircRNAs: a new target for the diagnosis and treatment of digestive system neoplasms. Cell Death Dis. 2021; Feb. 12(2):205.
Article
83. Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, et al. Non-coding RNAs in gastric cancer. Cancer Lett. 2020; Nov. 493:55–70.
Article
84. Zhang C, Han X, Yang L, Fu J, Sun C, Huang S, et al. Circular RNA circPPM1F modulates M1 macrophage activation and pancreatic islet inflammation in type 1 diabetes mellitus. Theranostics. 2020; Aug. 10(24):10908–24.
Article
85. Xu H, Wang C, Song H, Xu Y, Ji G. RNA-Seq profiling of circular RNAs in human colorectal cancer liver metastasis and the potential biomarkers. Mol Cancer. 2019; Jan. 18(1):8.
Article
86. Gu Y, Wang Y, He L, Zhang J, Zhu X, Liu N, et al. Circular RNA circIPO11 drives self-renewal of liver cancer initiating cells via Hedgehog signaling. Mol Cancer. 2021; Oct. 20(1):132.
Article
87. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013; Mar. 495(7441):384–8.
Article
88. Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015; Jun. 58(5):870–85.
Article
89. Chen J, Chen T, Zhu Y, Li Y, Zhang Y, Wang Y, et al. circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. J Exp Clin Cancer Res. 2019; Sep. 38(1):398.
Article
90. Zheng X, Huang M, Xing L, Yang R, Wang X, Jiang R, et al. The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer. Mol Cancer. 2020; Apr. 19(1):73.
Article
91. Xu JZ, Shao CC, Wang XJ, Zhao X, Chen JQ, Ouyang YX, et al. circTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axis. Cell Death Dis. 2019; Feb. 10(3):175.
Article
92. Mugoni V, Ciani Y, Nardella C, Demichelis F. Circulating RNAs in prostate cancer patients. Cancer Lett. 2022; Jan. 524:57–69.
Article
93. Yao Y, Chen X, Yang H, Chen W, Qian Y, Yan Z, et al. Hsa_circ_ 0058124 promotes papillary thyroid cancer tumorigenesis and invasiveness through the NOTCH3/GATAD2A axis. J Exp Clin Cancer Res. 2019; Jul. 38(1):318.
94. Bi W, Huang J, Nie C, Liu B, He G, Han J, et al. CircRNA circRNA_ 102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1-dependent activation of β-catenin pathway. J Exp Clin Cancer Res. 2018; Nov. 37(1):275.
95. Kristensen LS, Hansen TB, Veno MT, Kjems J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene. 2018; Feb. 37(5):555–65.
Article
96. Zhou X, Zhan L, Huang K, Wang X. The functions and clinical significance of circRNAs in hematological malignancies. J Hematol Oncol. 2020; Oct. 13(1):138.
Article
97. Suenkel C, Cavalli D, Massalini S, Calegari F, Rajewsky N. A highly conserved circular RNA is required to keep neural cells in a progenitor state in the mammalian brain. Cell Rep. 2020; Feb. 30(7):2170–9.
Article
98. Sheng JQ, Liu L, Wang MR, Li PY. Circular RNAs in digestive system cancer: potential biomarkers and therapeutic targets. Am J Cancer Res. 2018; Jul. 8(7):1142–56.
99. Hu W, Bi ZY, Chen ZL, Liu C, Li LL, Zhang F, et al. Emerging landscape of circular RNAs in lung cancer. Cancer Lett. 2018; Jul. 427:18–27.
Article
100. Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J. 2021; Jan. 19:910–28.
Article
101. Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 2018; Apr. 17(1):79.
Article
102. Fontemaggi G, Turco C, Esposito G, Di Agostino S. New molecular mechanisms and clinical impact of circRNAs in human cancer. Cancers (Basel). 2021; Jun. 13(13):3154.
Article
103. Karreth FA, Pandolfi PP. ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov. 2013; Oct. 3(10):1113–21.
Article
104. Zhao Y, Li Y, Wang L, Yang H, Wang Q, Qi H, et al. MicroRNA response elements-regulated TRAIL expression shows specific survival-suppressing activity on bladder cancer. J Exp Clin Cancer Res. 2013; Feb. 32(1):10.
Article
105. Chen L, Li W, Li Z, Song Y, Zhao J, Chen Z, et al. circNUDT21 promotes bladder cancer progression by modulating the miR-16-1-3p/MDM2/p53 axis. Mol Ther Nucleic Acids. 2021; Sep. 26:625–36.
Article
106. Hollensen AK, Andersen S, Hjorth K, Bak RO, Hansen TB, Kjems J, et al. Enhanced tailored MicroRNA sponge activity of RNA Pol II-transcribed TuD hairpins relative to ectopically expressed ciRS7-derived circRNAs. Mol Ther Nucleic Acids. 2018; Dec. 13:365–75.
Article
107. Pan Z, Cai J, Lin J, Zhou H, Peng J, Liang J, et al. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol Cancer. 2020; Apr. 19(1):71.
Article
108. Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 2018; Mar. 110(3):304–15.
Article
109. Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer. 2019; Aug. 18(1):131.
Article
110. Nabet BY, Qiu Y, Shabason JE, Wu TJ, Yoon T, Kim BC, et al. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell. 2017; Jul. 170(2):352–66.
Article
111. Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell. 2015; May. 161(4):774–89.
Article
112. Zheng R, Du M, Wang X, Xu W, Liang J, Wang W, et al. Exosome-transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol Cancer. 2018; Oct. 17(1):143.
Article
113. Huang X, He M, Huang S, Lin R, Zhan M, Yang D, et al. Circular RNA circERBB2 promotes gallbladder cancer progression by regulating PA2G4-dependent rDNA transcription. Mol Cancer. 2019; Nov. 18(1):166.
Article
114. Yang F, Hu A, Li D, Wang J, Guo Y, Liu Y, et al. Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Mol Cancer. 2019; Nov. 18(1):158.
Article
115. Ding L, Zhao Y, Dang S, Wang Y, Li X, Yu X, et al. Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol Cancer. 2019; Mar. 18(1):45.
Article
116. Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene. 2018; Nov. 37(44):5829–42.
Article
117. Chen Y, Yang F, Fang E, Xiao W, Mei H, Li H, et al. Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ. 2019; Jul. 26(7):1346–64.
Article
118. Hua JT, Ahmed M, Guo H, Zhang Y, Chen S, Soares F, et al. Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19. Cell. 2018; Jul. 174(3):564–75.
Article
119. Moison M, Pacheco JM, Lucero L, Fonouni-Farde C, Rodriguez-Melo J, Mansilla N, et al. The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold. Mol Plant. 2021; Jun. 14(6):937–48.
Article
120. Hu X, Li F, He J, Yang J, Jiang Y, Jiang M, et al. LncRNA NEAT1 recruits SFPQ to regulate MITF splicing and control RPE cell proliferation. Invest Ophthalmol Vis Sci. 2021; Nov. 62(14):18.
Article
121. Muller V, Oliveira-Ferrer L, Steinbach B, Pantel K, Schwarzenbach H. Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer. Mol Oncol. 2019; May. 13(5):1137–49.
Article
122. Yan J, Yang Y, Fan X, Tang Y, Tang Z. Sp1-mediated circRNA circHipk2 regulates myogenesis by targeting ribosomal protein Rpl7. Genes (Basel). 2021; May. 12(5):696.
Article
123. Du WW, Zhang C, Yang W, Yong T, Awan FM, Yang BB. Identifying and characterizing circRNA-protein interaction. Theranostics. 2017; Sep. 7(17):4183–91.
Article
124. Ma XL, Zhan TC, Hu JP, Zhang CL, Zhu KP. Doxorubicin-induced novel circRNA_0004674 facilitates osteosarcoma progression and chemoresistance by upregulating MCL1 through miR-142-5p. Cell Death Discov. 2021; Oct. 7(1):309.
Article
Full Text Links
  • CEO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr