Mycobiology.  2022 Oct;50(5):366-373. 10.1080/12298093.2022.2121497.

Gene Expression Analyses of Mutant Flammulina velutipes (Enokitake Mushroom) with Clogging Phenomenon

Affiliations
  • 1School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
  • 2Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
  • 3Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
  • 4Department of Biology, College of National Sciences, Kyungpook National University, Daegu, Republic of Korea

Abstract

Regulation of proper gene expression is important for cellular and organismal survival, maintenance, and growth. Abnormal gene expression, even for a single critical gene, can thwart cellular integrity and normal physiology to cause diseases, aging, and death. Therefore, gene expression profiling serves as a powerful tool to understand the pathology of diseases and to cure them. In this study, the difference in gene expression in Flammulina velutipes was compared between the wild type (WT) mushroom and the mutant one with clogging phenomenon. Differentially expressed transcripts were screened to identify the candidate genes responsible for the mutant phenotype using the DNA microarray analysis. A total of 88 genes including 60 upregulated and 28 downregulated genes were validated using the realtime quantitative PCR analysis. In addition, proteomic differences between the WT and mutant mushroom were analyzed using two–dimensional gel electrophoresis and matrixassisted laser desorption/ionization-time of flight (MALDI-TOF). Interestingly, the genes identified by these genomic and proteomic analyses were involved in stress response, translation, and energy/sugar metabolism, including HSP70, elongation factor 2, and pyruvate kinase. Together, our data suggest that the aberrant expression of these genes attributes to the mutant clogging phenotype. We propose that these genes can be targeted to foster normal growth in F. velutipes.

Keyword

Flammulina velutipes; clogging phenomenon; gene expression profiling
Full Text Links
  • MB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr