Korean J Physiol Pharmacol.  2022 Nov;26(6):469-478. 10.4196/kjpp.2022.26.6.469.

The WNT/Ca2+ pathway promotes atrial natriuretic peptide secretion by activating protein kinase C/transforming growth factor-β activated kinase 1/activating transcription factor 2 signaling in isolated beating rat atria

Affiliations
  • 1Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
  • 2Institue of Clinical Medicine, Yanbian University, 3 Cellular Function Research Center, Yanbian University, Yanji 133-002, China

Abstract

WNT signaling plays an important role in cardiac development, but abnormal activity is often associated with cardiac hypertrophy, myocardial infarction, remodeling, and heart failure. The effect of WNT signaling on regulation of atrial natriuretic peptide (ANP) secretion is unclear. Therefore, the purpose of this study was to investigate the effect of Wnt agonist 1 (Wnta1) on ANP secretion and mechanical dynamics in beating rat atria. Wnta1 treatment significantly increased atrial ANP secretion and pulse pressure; these effects were blocked by U73122, an antagonist of phospholipase C. U73122 also abolished the effects of Wnta1-mediated upregulation of protein kinase C (PKC) β and γ expression, and the PKC antagonist Go 6983 eliminated Wnta1-induced secretion of ANP. In addition, Wnta1 upregulated levels of phospho-transforming growth factor-β activated kinase 1 (p-TAK1), TAK1 banding 1 (TAB1) and phospho-activating transcription factor 2 (p-ATF2); these effects were blocked by both U73122 and Go 6983. Wnta1-induced ATF2 was abrogated by inhibition of TAK1. Furthermore, Wnta1 upregulated the expression of T cell factor (TCF) 3, TCF4, and lymphoid enhancer factor 1 (LEF1), and these effects were blocked by U73122 and Go 6983. Tak1 inhibition abolished the Wnta1-induced expression of TCF3, TCF4, and LEF1 and Wnta1-mediated ANP secretion and changes in mechanical dynamics. These results suggest that Wnta1 increased the secretion of ANP and mechanical dynamics in beating rat atria by activation of PKC–TAK1–ATF2–TCF3/LEF1 and TCF4/LEF1 signaling mainly via the WNT/Ca2+ pathway. It is also suggested that WNT–ANP signaling is implicated in cardiac physiology and pathophysiology.

Keyword

Activating transcription factor 2; Atrial natriuretic peptide; Protein kinase C; T cell factor and lymphoid enhancer factor; WNT signaling

Figure

  • Fig. 1 Effects of Wnt agonist 1 on atrial atrial natriuretic peptide (ANP) secretion (A) and dynamics (B) in beating rat atria. Data were expressed as means ± SE. n = 6. Cont, control; Wnta1, Wnt agonist 1; the collection time for each fraction is 2 min. *p < 0.05 vs. control.

  • Fig. 2 Effects of phospholipase C (PLC) antagonist on Wnt agonist 1-induced atrial natriuretic peptide (ANP) secretion (A) and dynamics (B) in beating rat atria. Data were expressed as means ± SE. n = 6. Cont, control; Wnta1, Wnt agonist 1; U, U73122; the collection time for each fraction is 2 min. *p < 0.05 vs. control, #p < 0.05 vs. Wnta1.

  • Fig. 3 Effects of Wnt agonist 1 on protein kinase C (PKC)β (A) and PKCγ (B) expression in beating rat atria. Data were expressed as means ± SE. n = 5. Cont, control; Wnta1, Wnt agonist 1; U, U73122. *p < 0.05 vs. control, #p < 0.05 vs. Wnta1.

  • Fig. 4 Effects of protein kinase C (PKC) antagonist on Wnt agonist 1-induced atrial natriuretic peptide (ANP) secretion (A) and dynamics (B) in beating rat atria. Data were expressed as means ± SE. n = 6. Cont, control; Wnta1, Wnt agonist 1; Go, Gö6983, an antagonist of PKC; the collection time for each fraction is 2 min. *p < 0.05 vs. control, #p < 0.05 vs. Wnta1.

  • Fig. 5 Effects of phospholipase C (PLC) (A) and protein kinase C (PKC) (B) antagonists on Wnt agonist 1-induced TAK1 banding 1 (TAB1) expression in beating rat atria. Data were expressed as means ± SE. n = 5. Cont, control; Wnta1, Wnt agonist 1; U, U73122; Go, Gö6983. *p < 0.05 vs. control, #p < 0.05 vs. Wnta1.

  • Fig. 6 Effects of phospholipase C (PLC) (A, B) and protein kinase C (PKC) (C, D) antagonists on Wnt agonist 1-induced TAK1 expression in beating rat atria. Data were expressed as means ± SE. n = 5. Cont, control; Wnta1, Wnt agonist 1; U, U73122; Go, Gö6983; p-TAK1, phospho-TAK1; t-TAK1, total-TAK1. *p < 0.05 vs. control, #p < 0.05 vs. Wnta1.

  • Fig. 7 Effects of phospholipase C (PLC) (A), protein kinase C (PKC) (B) and TAK1 (C) antagonists on Wnt agonist 1-induced ATF2 expression in beating rat atria. Data were expressed as means ± SE. n = 5. Cont, control; Wnta1, Wnt agonist 1; U, U73122; Go, Gö6983, TI, TAK1 inhibitor, an inhibitor of TAK1; p-ATF2, phospho-ATF2; t-ATF2, total-ATF2. *p < 0.05 vs. control, #p < 0.05 vs. Wnta1.

  • Fig. 8 Effects of phospholipase C (PLC), protein kinase C (PKC) and TAK1 antagonists on Wnt agonist 1-induced T cell factor (TCF)3 (A–C) and TCF4 (D–F) expression in beating rat atria. Data were expressed as means ± SE. n = 5. Cont, control; Wnta1, Wnt agonist 1; U, U73122; Go, Gö6983, TI, TAK1 inhibitor. *p < 0.05 vs. control, #p < 0.05 vs. Wnta1.

  • Fig. 9 Effects of phospholipase C (PLC) (A), protein kinase C (PKC) (B) and TAK1 (C) antagonists on Wnt agonist 1-induced lymphoid enhancer factor 1 (LEF1) expression in beating rat atria. Data were expressed as means ± SE. n = 5. Cont, control; Wnta1, Wnt agonist 1; U, U73122; Go, Gö6983, TI, TAK1 inhibitor. *p < 0.05 vs. control, #p < 0.05 vs. Wnta1.

  • Fig. 10 Effects of TAK1 antagonist on Wnt agonist 1-induced atrial natriuretic peptide (ANP) secretion (A) and dynamics (B) in beating rat atria. Data were expressed as means ± SE. n = 6. Cont, control; Wnta1, Wnt agonist 1; TI, TAK1 inhibitor. *p < 0.05 vs. control, #p < 0.05 vs. Wnta1.

  • Fig. 11 Schematic mechanisms by which Wnt agonist 1 (Wnta1) regulates atrial atrial natriuretic peptide (ANP) secretion and mechanical dynamics. PLC, phospholipase C; PKC, protein kinase C; TAB1, TAK1 banding 1; TCF, T cell factor; LEF1, lymphoid enhancer factor 1.


Reference

1. Kim HY, Cho KW, Xu DY, Kang DG, Lee HS. 2013; Endogenous ACh tonically stimulates ANP secretion in rat atria. Am J Physiol Heart Circ Physiol. 305:H1050–H1056. DOI: 10.1152/ajpheart.00469.2013. PMID: 23913708. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84884938581&origin=inward.
Article
2. Kiemer AK, Vollmar AM. 2001; The atrial natriuretic peptide regulates the production of inflammatory mediators in macrophages. Ann Rheum Dis. 60(Suppl 3):iii68–iii70. DOI: 10.1136/ard.60.90003.iii68. PMID: 11890659. PMCID: PMC1766678.
3. De Vito P, Incerpi S, Pedersen JZ, Luly P. 2010; Atrial natriuretic peptide and oxidative stress. Peptides. 31:1412–1419. DOI: 10.1016/j.peptides.2010.04.001. PMID: 20385186. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77953124862&origin=inward.
Article
4. Hong L, Xi J, Zhang Y, Tian W, Xu J, Cui X, Xu Z. 2012; Atrial natriuretic peptide prevents the mitochondrial permeability transition pore opening by inactivating glycogen synthase kinase 3β via PKG and PI3K in cardiac H9c2 cells. Eur J Pharmacol. 695:13–19. DOI: 10.1016/j.ejphar.2012.07.053. PMID: 22975711. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84867571658&origin=inward.
Article
5. Lugnier C, Meyer A, Charloux A, Andrès E, Gény B, Talha S. 2019; The endocrine function of the heart: physiology and involvements of natriuretic peptides and cyclic nucleotide phosphodiesterases in heart failure. J Clin Med. 8:1746. DOI: 10.3390/jcm8101746. PMID: 31640161. PMCID: PMC6832599. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85083845505&origin=inward.
Article
6. Mezzasoma L, Peirce MJ, Minelli A, Bellezza I. 2017; Natriuretic peptides: the case of prostate cancer. Molecules. 22:1680. DOI: 10.3390/molecules22101680. PMID: 28994721. PMCID: PMC6151559. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85032930690&origin=inward.
Article
7. Serafino A, Pierimarchi P. 2014; Atrial natriuretic peptide: a magic bullet for cancer therapy targeting Wnt signaling and cellular pH regulators. Curr Med Chem. 21:2401–2409. DOI: 10.2174/0929867321666140205140152. PMID: 24524761. PMCID: PMC4063317. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84901939934&origin=inward.
Article
8. Zhang J, Zhao Z, Wang J. 2014; Natriuretic peptide receptor A as a novel target for cancer. World J Surg Oncol. 12:174. DOI: 10.1186/1477-7819-12-174. PMID: 24894887. PMCID: PMC4049422. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84901981985&origin=inward.
Article
9. Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. 2018; WNT signaling in cardiac and vascular disease. Pharmacol Rev. 70:68–141. DOI: 10.1124/pr.117.013896. PMID: 29247129. PMCID: PMC6040091. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85040003896&origin=inward.
Article
10. Moon RT, Kohn AD, De Ferrari GV, Kaykas A. 2004; WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet. 5:691–701. DOI: 10.1038/nrg1427. PMID: 15372092. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=4344584730&origin=inward.
11. Ng LF, Kaur P, Bunnag N, Suresh J, Sung ICH, Tan QH, Gruber J, Tolwinski NS. 2019; WNT signaling in disease. Cells. 8:826. DOI: 10.3390/cells8080826. PMID: 31382613. PMCID: PMC6721652. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074564426&origin=inward.
Article
12. Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. 2020; Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev. 60:101063. DOI: 10.1016/j.arr.2020.101063. PMID: 32272170. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85083282776&origin=inward.
Article
13. Fu WB, Wang WE, Zeng CY. 2019; Wnt signaling pathways in myocardial infarction and the therapeutic effects of Wnt pathway inhibitors. Acta Pharmacol Sin. 40:9–12. DOI: 10.1038/s41401-018-0060-4. PMID: 30002488. PMCID: PMC6318317. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049790426&origin=inward.
Article
14. Stylianidis V, Hermans KCM, Blankesteijn WM. 2017; Wnt signaling in cardiac remodeling and heart failure. Handb Exp Pharmacol. 243:371–393. DOI: 10.1007/164_2016_56. PMID: 27838851. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85020690054&origin=inward.
Article
15. Katoh M. 2018; Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int J Mol Med. 42:713–725. DOI: 10.3892/ijmm.2018.3689. PMID: 29786110. PMCID: PMC6034925. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85055010694&origin=inward.
Article
16. Zhang CG, Jia ZQ, Li BH, Zhang H, Liu YN, Chen P, Ma KT, Zhou CY. 2009; Beta-catenin/TCF/LEF1 can directly regulate phenylephrine-induced cell hypertrophy and Anf transcription in cardiomyocytes. Biochem Biophys Res Commun. 390:258–262. DOI: 10.1016/j.bbrc.2009.09.101. PMID: 19799869. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70350125871&origin=inward.
Article
17. Zhang B, Cui X, Jin HH, Hong L, Liu X, Li X, Zhang QG, Liu LP. 2017; Ginsenoside Re prevents angiotensin II-induced gap-junction remodeling by activation of PPARγ in isolated beating rat atria. Life Sci. 190:36–45. DOI: 10.1016/j.lfs.2017.09.027. PMID: 28962867. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85030156838&origin=inward.
Article
18. Liu LP, Hong L, Yu L, Li HY, Ding DZ, Jin SJ, Cui X. 2012; Ouabain stimulates atrial natriuretic peptide secretion via the endothelin-1/ET(B) receptor-mediated pathway in beating rabbit atria. Life Sci. 90:793–798. DOI: 10.1016/j.lfs.2012.04.008. PMID: 22521291. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84860716459&origin=inward.
Article
19. Lim JY, Park SJ, Hwang HY, Park EJ, Nam JH, Kim J, Park SI. 2005; TGF-beta1 induces cardiac hypertrophic responses via PKC-dependent ATF-2 activation. J Mol Cell Cardiol. 39:627–636. DOI: 10.1016/j.yjmcc.2005.06.016. PMID: 16125722. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=24944542831&origin=inward.
Article
20. Zhang M, Hagenmueller M, Riffel JH, Kreusser MM, Bernhold E, Fan J, Katus HA, Backs J, Hardt SE. 2015; Calcium/calmodulin-dependent protein kinase II couples Wnt signaling with histone deacetylase 4 and mediates dishevelled-induced cardiomyopathy. Hypertension. 65:335–344. DOI: 10.1161/HYPERTENSIONAHA.114.04467. PMID: 25489064. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84921539288&origin=inward.
Article
21. Bae IS, Kim SH. 2019; Expression and secretion of an atrial natriuretic peptide in beige-like 3T3-L1 adipocytes. Int J Mol Sci. 20:6128. DOI: 10.3390/ijms20246128. PMID: 31817347. PMCID: PMC6940835. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85076305798&origin=inward.
Article
22. Liu X, Zhang Y, Hong L, Han CJ, Zhang B, Zhou S, Wu CZ, Liu LP, Cui X. 2017; Gallic acid increases atrial natriuretic peptide secretion and mechanical dynamics through activation of PKC. Life Sci. 181:45–52. DOI: 10.1016/j.lfs.2017.05.024. PMID: 28535942. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85020054586&origin=inward.
Article
23. Mukhopadhyay H, Lee NY. 2020; Multifaceted roles of TAK1 signaling in cancer. Oncogene. 39:1402–1413. DOI: 10.1038/s41388-019-1088-8. PMID: 31695153. PMCID: PMC7023988. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074801913&origin=inward.
Article
24. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K. 1996; TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science. 24:1179–1182. DOI: 10.1126/science.272.5265.1179. PMID: 8638164. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0029940355&origin=inward.
25. Shintani Y, Drexler HC, Kioka H, Terracciano CM, Coppen SR, Imamura H, Akao M, Nakai J, Wheeler AP, Higo S, Nakayama H, Takashima S, Yashiro K, Suzuki K. 2014; Toll-like receptor 9 protects non-immune cells from stress by modulating mitochondrial ATP synthesis through the inhibition of SERCA2. EMBO Rep. 15:438–445. DOI: 10.1002/embr.201337945. PMID: 24610369. PMCID: PMC3989675. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84898605890&origin=inward.
Article
26. Shintani Y, Kapoor A, Kaneko M, Smolenski RT, D'Acquisto F, Coppen SR, Harada-Shoji N, Lee HJ, Thiemermann C, Takashima S, Yashiro K, Suzuki K. 2013; TLR9 mediates cellular protection by modulating energy metabolism in cardiomyocytes and neurons. Proc Natl Acad Sci U S A. 110:5109–5114. DOI: 10.1073/pnas.1219243110. PMID: 23479602. PMCID: PMC3612600. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84875518435&origin=inward.
Article
27. McCarthy CG, Wenceslau CF, Ogbi S, Szasz T, Webb RC. 2018; Toll-like receptor 9-dependent AMPKα activation occurs via TAK1 and contributes to RhoA/ROCK signaling and actin polymerization in vascular smooth muscle cells. J Pharmacol Exp Ther. 365:60–71. DOI: 10.1124/jpet.117.245746. PMID: 29348267. PMCID: PMC5830639. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85043282975&origin=inward.
Article
28. Grumolato L, Liu G, Haremaki T, Mungamuri SK, Mong P, Akiri G, Lopez-Bergami P, Arita A, Anouar Y, Mlodzik M, Ronai ZA, Brody J, Weinstein DC, Aaronson SA. 2013; β-Catenin-independent activation of TCF1/LEF1 in human hematopoietic tumor cells through interaction with ATF2 transcription factors. PLoS Genet. 9:e1003603. DOI: 10.1371/journal.pgen.1003603. PMID: 23966864. PMCID: PMC3744423. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84884631810&origin=inward.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr