Blood Res.  2022 Jun;57(2):86-94. 10.5045/br.2022.2021224.

Korean clinical practice guidelines for the diagnosis of hereditary hemolytic anemia

Affiliations
  • 1Department of Pediatrics, Dong-A University, College of Medicine, Busan, Korea
  • 2Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
  • 3Department of Pediatrics, Keimyung University School of Medicine, Keimyung University Dongsan Hospital, Daegu, Korea
  • 4Department of Pediatrics, Yeungnam University Medical Center, Daegu, Korea
  • 5Department of Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Korea
  • 6Department of Laboratory Medicine, Dong-A University, College of Medicine, Busan, Korea
  • 7Department of Pediatrics, 7 Sungkyunkwan University School of Medicine, Seoul, Korea
  • 8Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea

Abstract

Although the prevalence of hereditary hemolytic anemia (HHA) is relatively low in Korea, it has been gradually increasing in recent decades due to increment in the proportions of hemoglobinopathies from immigrants of South East Asia, raising awareness of the disease among clinicians, and advances in diagnostic technology. As such, the red blood cell (RBC) Disorder Working Party (WP), previously called HHA WP, of the Korean Society of Hematology (KSH) developed the Korean Standard Operating Procedures (SOPs) for the diagnosis of HHA in 2007. These SOPs have been continuously revised and updated following advances in diagnostic technology [e.g., flow cytometric osmotic fragility test (FOFT) and eosin-5-maleimide (EMA) binding test], current methods for membrane protein or enzyme analysis [e.g., liquid chromatography-tandem mass spectrometry (LC-MS/MS), ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), high-performance liquid chromatography (HPLC)], and molecular genetic tests using next-generation sequencing (NGS). However, the diagnosis and treatment of HHA remain challenging as they require considerable experience and understanding of the disease. Therefore, in this new Korean Clinical Practice Guidelines for the Diagnosis of HHA, on behalf of the RBC Disorder WP of KSH, updated guidelines to approach patients suspected of HHA are summarized. NGS is proposed to perform prior to membrane protein or enzyme analysis by LC-MS/MS, UPLC-MS/MS or HPLC techniques due to the availability of gene testing in more laboratories in Korea. We hope that this guideline will be helpful for clinicians in making diagnostic decisions for patients with HHA in Korea.

Keyword

Hereditary hemolytic anemia; Diagnosis; Standard operating procedures

Figure

  • Fig. 1 Updated standard operating procedure for the diagnosis of hereditary hemolytic anemia by the RBC Disorder Working Party of the Korean Society of Hematology [5, 6]. Abbreviations: CBC, complete blood count; EMA, eosin 5 -maleimide; HHA, hereditary hemolytic anemia; HPLC, high performance liquid chromatography; LC-MS/MS, liquid chromatography-tandem mass spectrometry; LDH, lactate dehydro-genase; OFT, osmotic fragility testing; PBS, peripheral blood smear; RBC, red blood cell; TIBC, total binding capacity; UPLC-MS/MS, ultra-performance liquid chromato-graphytandem mass spectrometry.


Reference

1. Haley K. 2017; Congenital hemolytic anemia. Med Clin North Am. 101:361–74. DOI: 10.1016/j.mcna.2016.09.008. PMID: 28189176.
Article
2. Ahn DH, Sohn KC, Kang IJ, et al. 1991; Statistical analysis of hemolytic anemia in Korea. Korean J Hematol. 26:445–61.
3. Kim YP, Joh JY, Shin IS. 2015; Family function of the families consisting of Asian immigrant women living in South Korea: a 3-year longitudinal study. Asia Pac J Public Health. 27:NP2702–11. DOI: 10.1177/1010539512446958. PMID: 22652245.
4. Lee YK, Kim HJ, Lee K, et al. 2019; Recent progress in laboratory diagnosis of thalassemia and hemoglobinopathy: a study by the Korean Red Blood Cell Disorder Working Party of the Korean Society of Hematology. Blood Res. 54:17–22. DOI: 10.5045/br.2019.54.1.17. PMID: 30956959. PMCID: PMC6439293.
Article
5. Shim YJ, Jung HL, Shin HY, et al. 2020; Epidemiological study of hereditary hemolytic anemia in the Korean pediatric population during 1997-2016: a nationwide retrospective cohort study. J Korean Med Sci. 35:e279. DOI: 10.3346/jkms.2020.35.e279. PMID: 32830468. PMCID: PMC7445306.
Article
6. Risinger M, Emberesh M, Kalfa TA. 2019; Rare hereditary hemolytic anemias: diagnostic approach and considerations in management. Hematol Oncol Clin North Am. 33:373–92. DOI: 10.1016/j.hoc.2019.01.002. PMID: 31030808.
7. Park ES, Jung HL, Kim HJ, et al. 2013; Hereditary hemolytic anemia in Korea from 2007 to 2011: a study by the Korean Hereditary Hemolytic Anemia Working Party of the Korean Society of Hematology. Blood Res. 48:211–6. DOI: 10.5045/br.2013.48.3.211. PMID: 24086942. PMCID: PMC3786282.
Article
8. Chueh HW. 2016; Treatment and management of late complications in hereditary hemolytic anemia. Clin Pediatr Hematol Oncol. 23:1–7. DOI: 10.15264/cpho.2016.23.1.1.
Article
9. Jung HL. 2013; A new paradigm in the diagnosis of hereditary hemolytic anemia. Blood Res. 48:237–9. DOI: 10.5045/br.2013.48.4.237. PMID: 24466544. PMCID: PMC3894378.
Article
10. Choi HS, Choi Q, Kim JA, et al. 2019; Molecular diagnosis of hereditary spherocytosis by multi-gene target sequencing in Korea: matching with osmotic fragility test and presence of spherocyte. Orphanet J Rare Dis. 14:114. DOI: 10.1186/s13023-019-1070-0. PMID: 31122244. PMCID: PMC6533652. PMID: abee68d56a8e4cec884160b107e54fd9.
Article
11. Cortesi V, Manzoni F, Raffaeli G, et al. 2021; Severe presentation of congenital hemolytic anemias in the neonatal age: diagnostic and therapeutic issues. Diagnostics (Basel). 11:1549. DOI: 10.3390/diagnostics11091549. PMID: 34573891. PMCID: PMC8467765. PMID: 5e9ea1bf6021478daf2d82ad17b65ba5.
Article
12. Grace RF, Bianchi P, van Beers EJ, et al. 2018; Clinical spectrum of pyruvate kinase deficiency: data from the Pyruvate Kinase Deficiency Natural History Study. Blood. 131:2183–92. DOI: 10.1182/blood-2017-10-810796. PMID: 29549173.
Article
13. Marengo-Rowe AJ. 2007; The thalassemias and related disorders. Proc (Bayl Univ Med Cent). 20:27–31. DOI: 10.1080/08998280.2007.11928230. PMID: 17256039. PMCID: PMC1769530.
Article
14. Mohandas N. 2018; Inherited hemolytic anemia: a possessive beginner's guide. Hematology Am Soc Hematol Educ Program. 2018:377–81. DOI: 10.1182/asheducation-2018.1.377. PMID: 30504335. PMCID: PMC6245988.
Article
15. Heegaard ED, Brown KE. 2002; Human parvovirus B19. Clin Microbiol Rev. 15:485–505. DOI: 10.1128/CMR.15.3.485-505.2002. PMID: 12097253. PMCID: PMC118081.
Article
16. Ghosh K, Ghosh K, Agrawal R, Nadkarni AH. 2020; Recent advances in screening and diagnosis of hemoglobinopathy. Expert Rev Hematol. 13:13–21. DOI: 10.1080/17474086.2019.1656525. PMID: 31432725.
Article
17. Kohne E. 2011; Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch Arztebl Int. 108:532–40. DOI: 10.3238/arztebl.2011.0532. PMID: 21886666. PMCID: PMC3163784.
18. Dhaliwal G, Cornett PA, Tierney LM Jr. 2004; Hemolytic anemia. Am Fam Physician. 69:2599–606. DOI: 10.1016/j.cpha.2019.02.012. PMID: 30215915.
19. Noronha SA. 2016; Acquired and congenital hemolytic anemia. Pediatr Rev. 37:235–46. DOI: 10.1542/pir.2015-0053. PMID: 27252179.
Article
20. Bolton-Maggs PH, Stevens RF, Dodd NJ, et al. 2004; Guidelines for the diagnosis and management of hereditary spherocytosis. Br J Haematol. 126:455–74. DOI: 10.1111/j.1365-2141.2004.05052.x. PMID: 15287938.
Article
21. Bolton-Maggs PH, Langer JC, Iolascon A, Tittensor P, King MJ. General Haematology Task Force of the British Committee for Standards in Haematology. 2012; Guidelines for the diagnosis and management of hereditary spherocytosis--2011 update. Br J Haematol. 156:37–49. DOI: 10.1111/j.1365-2141.2011.08921.x. PMID: 22055020.
Article
22. Phillips J, Henderson AC. 2018; Hemolytic anemia: evaluation and differential diagnosis. Am Fam Physician. 98:354–61. PMID: 30215915. PMID: 99d9750c8a674024a7e5ccabdf1ad9b2.
23. Zanella A, Bianchi P. 2000; Red cell pyruvate kinase deficiency: from genetics to clinical manifestations. Baillieres Best Pract Res Clin Haematol. 13:57–81. DOI: 10.1053/beha.1999.0057. PMID: 10916678.
Article
24. Lux SE. 2015; Disorders of the red cell membrane. In: Orkin SH, Nathan DG, Ginsburg D, Look AT, Fisher DE, Lux IV S, eds. Nathan and Oski's hematology of infancy and childhood. 8th ed. Philadelphia, PA:. Elsevier Saunders,. 515–79.
25. 2011. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. World Health Organization;Geneva, Switzerland:
26. Hillman RS. 1969; Characteristics of marrow production and reticulocyte maturation in normal man in response to anemia. J Clin Invest. 48:443–53. DOI: 10.1172/JCI106001. PMID: 5773082. PMCID: PMC535708.
Article
27. Bracho FJ, Osorio IA. 2020; Evaluation of the reticulocyte production index in the pediatric population. Am J Clin Pathol. 154:70–7. DOI: 10.1093/ajcp/aqaa020. PMID: 32270177.
Article
28. Barcellini W, Fattizzo B. 2015; Clinical applications of hemolytic markers in the differential diagnosis and management of hemolytic anemia. Dis Markers. 2015:635670. DOI: 10.1155/2015/635670. PMID: 26819490. PMCID: PMC4706896.
Article
29. Sadrzadeh SM, Bozorgmehr J. 2004; Haptoglobin phenotypes in health and disorders. Am J Clin Pathol. 121(Suppl):S97–104. DOI: 10.1309/8GLX5798Y5XHQ0VW. PMID: 15298155.
Article
30. Risinger M, Kalfa TA. 2020; Red cell membrane disorders: structure meets function. Blood. 136:1250–61. DOI: 10.1182/blood.2019000946. PMID: 32702754. PMCID: PMC7483429.
Article
31. Gallagher PG. 2015; Diagnosis and management of rare congenital nonimmune hemolytic disease. Hematology Am Soc Hematol Educ Program. 2015:392–9. DOI: 10.1182/asheducation-2015.1.392. PMID: 26637748.
Article
32. Yaish HM, Christensen RD, Lemons RS. 2017; Neonatal nonimmune hemolytic anemia. Curr Opin Pediatr. 29:12–9. DOI: 10.1097/MOP.0000000000000440. PMID: 27861255.
Article
33. Won DI, Suh JS. 2009; Flow cytometric detection of erythrocyte osmotic fragility. Cytometry B Clin Cytom. 76:135–41. DOI: 10.1002/cyto.b.20448. PMID: 18727072.
Article
34. Arora RD, Dass J, Maydeo S, et al. 2018; Flow cytometric osmotic fragility test and eosin‐5'‐maleimide dye‐binding tests are better than conventional osmotic fragility tests for the diagnosis of hereditary spherocytosis. Int J Lab Hematol. 40:335–42. DOI: 10.1111/ijlh.12794. PMID: 29573337.
Article
35. King MJ, Behrens J, Rogers C, Flynn C, Greenwood D, Chambers K. 2000; Rapid flow cytometric test for the diagnosis of membrane cytoskeleton-associated haemolytic anaemia. Br J Haematol. 111:924–33. DOI: 10.1046/j.1365-2141.2000.02416.x. PMID: 11122157.
Article
36. Ciepiela O, Adamowicz-Salach A, Zgodzińska A, Łazowska M, Kotuła I. 2018; Flow cytometric osmotic fragility test: increased assay sensitivity for clinical application in pediatric hematology. Cytometry B Clin Cytom. 94:189–95. DOI: 10.1002/cyto.b.21511. PMID: 28103644.
Article
37. King MJ, Smythe JS, Mushens R. 2004; Eosin-5-maleimide binding to band 3 and Rh-related proteins forms the basis of a screening test for hereditary spherocytosis. Br J Haematol. 124:106–13. DOI: 10.1046/j.1365-2141.2003.04730.x. PMID: 14675415.
Article
38. Bianchi P, Fermo E, Vercellati C, et al. 2012; Diagnostic power of laboratory tests for hereditary spherocytosis: a comparison study in 150 patients grouped according to molecular and clinical characteristics. Haematologica. 97:516–23. DOI: 10.3324/haematol.2011.052845. PMID: 22058213. PMCID: PMC3347664.
Article
39. Park SH, Park CJ, Lee BR, et al. 2014; Comparison study of the eosin-5′-maleimide binding test, flow cytometric osmotic fragility test, and cryohemolysis test in the diagnosis of hereditary spherocytosis. Am J Clin Pathol. 142:474–84. DOI: 10.1309/AJCPO7V4OGXLIIPP. PMID: 25239414.
Article
40. Hunt L, Greenwood D, Heimpel H, Noel N, Whiteway A, King MJ. 2015; Toward the harmonization of result presentation for the eosin-5'-maleimide binding test in the diagnosis of hereditary spherocytosis. Cytometry B Clin Cytom. 88:50–7. DOI: 10.1002/cytob.21187.
Article
41. Bender MA, Yusuf C, Davis T, et al. 2020; Newborn screening practices and alpha-thalassemia detection - United States, 2016. MMWR Morb Mortal Wkly Rep. 69:1269–72. DOI: 10.15585/mmwr.mm6936a7. PMID: 32915167. PMCID: PMC7499831.
Article
42. Lee HJ, Shin KH, Kim HH, et al. 2019; Increased prevalence of thalassemia in young people in Korea: impact of increasing immigration. Ann Lab Med. 39:133–40. DOI: 10.3343/alm.2019.39.2.133. PMID: 30430775. PMCID: PMC6240526.
Article
43. Joutovsky A, Hadzi-Nesic J, Nardi MA. 2004; HPLC retention time as a diagnostic tool for hemoglobin variants and hemoglobinopathies: a study of 60000 samples in a clinical diagnostic laboratory. Clin Chem. 50:1736–47. DOI: 10.1373/clinchem.2004.034991. PMID: 15388656.
Article
44. Kim JE, Kim BR, Woo KS, Kim JM, Park JI, Han JY. 2011; Comparison of capillary electrophoresis with cellulose acetate electrophoresis for the screening of hemoglobinopathies. Korean J Lab Med. 31:238–43. DOI: 10.3343/kjlm.2011.31.4.238. PMID: 22016676. PMCID: PMC3190001.
Article
45. McPherson RA, Pincus MR. 2021. Henry's clinical diagnosis and management by laboratory methods e-book. 24th ed. Elsevier Health Sciences;Philadelphia, PA: DOI: 10.1373/clinchem.2004.034991.
46. Borbely N, Phelan L, Szydlo R, Bain B. 2013; Capillary zone electro-phoresis for haemoglobinopathy diagnosis. J Clin Pathol. 66:29–39. DOI: 10.1136/jclinpath-2012-200946. PMID: 23105123.
Article
47. Iolascon A, Andolfo I, Russo R. 2019; Advances in understanding the pathogenesis of red cell membrane disorders. Br J Haematol. 187:13–24. DOI: 10.1111/bjh.16126. PMID: 31364155.
Article
48. King MJ, Zanella A. 2013; Hereditary red cell membrane disorders and laboratory diagnostic testing. Int J Lab Hematol. 35:237–43. DOI: 10.1111/ijlh.12070. PMID: 23480868.
Article
49. Gambale A, Iolascon A, Andolfo I, Russo R. 2016; Diagnosis and management of congenital dyserythropoietic anemias. Expert Rev Hematol. 9:283–96. DOI: 10.1586/17474086.2016.1131608. PMID: 26653117.
Article
50. Russo R, Gambale A, Langella C, Andolfo I, Unal S, Iolascon A. 2014; Retrospective cohort study of 205 cases with congenital dyserythropoietic anemia type II: definition of clinical and molecular spectrum and identification of new diagnostic scores. Am J Hematol. 89:E169–75. DOI: 10.1002/ajh.23800. PMID: 25044164.
Article
51. Russo R, Andolfo I, Manna F, et al. 2018; Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias. Am J Hematol. 93:672–82. DOI: 10.1002/ajh.25058. PMID: 29396846.
Article
52. King MJ, Garçon L, Hoyer JD, et al. 2015; ICSH guidelines for the laboratory diagnosis of nonimmune hereditary red cell membrane disorders. Int J Lab Hematol. 37:304–25. DOI: 10.1111/ijlh.12335. PMID: 25790109.
Article
53. Lee YK, Cho HI, Park SS, et al. 1999; SDS-PAGE analysis of red cell membrane proteins in hereditary hemolytic anemia. Korean J Hematol. 34:559–67.
54. Şener LT, Aktan M, Albeniz G, Şener A, Üstek D, Albeniz I. 2019; Identification of red blood cell membrane defects in a patient with hereditary spherocytosis using next‑generation sequencing technology and matrix‑assisted laser desorption/ionization time‑of‑flight mass spectrometry. Mol Med Rep. 19:3912–22. DOI: 10.3892/mmr.2019.10036. PMID: 30896804.
Article
55. Bryk AH, Wiśniewski JR. 2017; Quantitative analysis of human red blood cell proteome. J Proteome Res. 16:2752–61. DOI: 10.1021/acs.jproteome.7b00025. PMID: 28689405.
Article
56. Delaunay J. 2007; The molecular basis of hereditary red cell membrane disorders. Blood Rev. 21:1–20. DOI: 10.1016/j.blre.2006.03.005. PMID: 16730867.
Article
57. Peters AL, Veldthuis M, van Leeuwen K, et al. 2017; Comparison of spectrophotometry, chromate inhibition, and cytofluorometry versus gene sequencing for detection of heterozygously glucose- 6-phosphate dehydrogenase-deficient females. J Histochem Cytochem. 65:627–36. DOI: 10.1369/0022155417730021. PMID: 28902532. PMCID: PMC5665106.
58. Park CM, Lee K, Jun SH, Song SH, Song J. 2017; Ultra-performance liquid chromatography-tandem mass spectrometry-based multiplex enzyme assay for six enzymes associated with hereditary hemolytic anemia. J Chromatogr B Analyt Technol Biomed Life Sci. 1060:76–83. DOI: 10.1016/j.jchromb.2017.05.040. PMID: 28600963.
Article
59. Glader B. Greer JP, Arber DA, Glader B, editors. 2013. Hereditary hemolytic anemias due to red blood cell enzyme disorders. Wintrobe's clinical hematology. 13th ed. Lippincott Williams & Wilkins;Philadelphia, PA: p. 728–45.
60. van der Harst P, Zhang W, Mateo Leach I, et al. 2012; Seventy-five genetic loci influencing the human red blood cell. Nature. 492:369–75. DOI: 10.1038/nature11677. PMID: 23222517. PMCID: PMC3623669.
61. Agarwal AM, Nussenzveig RH, Reading NS, et al. 2016; Clinical utility of next‐generation sequencing in the diagnosis of hereditary haemolytic anaemias. Br J Haematol. 174:806–14. DOI: 10.1111/bjh.14131. PMID: 27292444.
Article
62. Roy NB, Wilson EA, Henderson S, et al. 2016; A novel 33‐gene targeted resequencing panel provides accurate, clinical‐grade diagnosis and improves patient management for rare inherited anaemias. Br J Haematol. 175:318–30. DOI: 10.1111/bjh.14221. PMID: 27432187. PMCID: PMC5132128.
Article
63. Sun Y, Ruivenkamp CA, Hoffer MJ, et al. 2015; Next-generation diagnostics: gene panel, exome, or whole genome? Hum Mutat. 36:648–55. DOI: 10.1002/humu.22783. PMID: 25772376.
Article
64. Bean LJH, Funke B, Carlston CM, et al. 2020; Diagnostic gene sequencing panels: from design to report-a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 22:453–61. DOI: 10.1038/s41436-019-0666-z. PMID: 31732716.
Article
Full Text Links
  • BR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr