Yonsei Med J.  2022 Mar;63(3):229-240. 10.3349/ymj.2022.63.3.229.

MEG3 LncRNA from Exosomes Released from Cancer-Associated Fibroblasts Enhances Cisplatin Chemoresistance in SCLC via a MiR-15a-5p/CCNE1 Axis

  • 1Department of Oncology, The Fourth People’s Hospital of Jinan, Jinan, China
  • 2Department of Oncology, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China


Long non-coding RNAs (lncRNAs) may act as oncogenes in small-cell lung cancer (SCLC). Exosomes containing lncRNAs released from cancer-associated fibroblasts (CAF) accelerate tumorigenesis and confer chemoresistance. This study aimed to explore the action mechanism of the CAF-derived lncRNA maternally expressed gene 3 (MEG3) on cisplatin (DDP) chemoresistance and cell processes in SCLC.
Materials and Methods
Quantitative real-time PCR was conducted to determine the expression levels of MEG3, miR-15a-5p, and CCNE1. Cell viability and metastasis were measured by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-h-tetrazolium bromide and invasion assays, respectively. A xenograft tumor model was developed to confirm the effect of MEG3 overexpression on SCLC progression in vivo. Relationships between miR-15a-5p and MEG3/CCNE1 were predicted using StarBase software and validated by dual luciferase reporter assay. Western blotting was used to determine protein levels. A co-culture model was established to explore the effects of exosomes on MEG3 expression in SCLC cell lines.
MEG3 was overexpressed in SCLC tissues and cells. MEG3 silencing significantly repressed cell viability and metastasis in SCLC. High expression of MEG3 was observed in CAF-derived conditioned medium (CM) and exosomes, and promoted chemoresistance and cancer progression. Additionally, MEG3 was found to serve as a sponge of miR-15a-5p to mediate CCNE1 expression. Overexpression of miR-15a-5p and knockout of CCNE1 reversed the effects of MEG3 overexpression on cell viability and metastasis.
MEG3 lncRNA released from CAF-derived exosomes promotes DDP chemoresistance via regulation of a miR-15a-5p/CCNE1 axis. These findings may provide insight into SCLC therapy.


Small-cell lung cancer; cancer-associated fibroblasts; exosomes; MEG3; chemoresistance
Full Text Links
  • YMJ
export Copy
  • Twitter
  • Facebook
Similar articles
Copyright © 2022 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr