Korean J Physiol Pharmacol.  2021 Nov;25(6):575-583. 10.4196/kjpp.2021.25.6.575.

Aging effects on the diurnal patterns of gut microbial composition in male and female mice

Affiliations
  • 1Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07084, Korea.
  • 2Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul 07084, Korea.
  • 3Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07084, Korea.
  • 4Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07084, Korea.

Abstract

Composition of the gut microbiota changes with aging and plays an important role in age-associated disease such as metabolic syndrome, cancer, and neurodegeneration. The gut microbiota composition oscillates through the day, and the disruption of their diurnal rhythm results in gut dysbiosis leading to metabolic and immune dysfunctions. It is well documented that circadian rhythm changes with age in several biological functions such as sleep, body temperature, and hormone secretion. However, it is not defined whether the diurnal pattern of gut microbial composition is affected by aging. To evaluate aging effects on the diurnal pattern of the gut microbiome, we evaluated the taxa profiles of cecal contents obtained from young and aged mice of both sexes at daytime and nighttime points by 16S rRNA gene sequencing. At the phylum level, the ratio of Firmicutes to Bacteroidetes and the relative abundances of Verrucomicrobia and Cyanobacteria were increased in aged male mice at night compared with that of young male mice. Meanwhile, the relative abundances of Sutterellaceae, Alloprevotella, Lachnospiraceae UCG-001, and Parasutterella increased in aged female mice at night compared with that of young female mice. The Lachnospiraceae NK4A136 group relative abundance increased in aged mice of both sexes but at opposite time points. These results showed the changes in diurnal patterns of gut microbial composition with aging, which varied depending on the sex of the host. We suggest that disturbed diurnal patterns of the gut microbiome can be a factor for the underlying mechanism of age-associated gut dysbiosis.

Keyword

Aging; Diurnal rhythm; Dysbiosis; Gut microbiota; Sex difference

Figure

  • Fig. 1 Diurnal differences of the gut microbiota between young and aged mice at the phylum and family levels. (A) Experimental scheme of gut sampling times in young and aged mice according to light/dark cycle. (B–E) Mean gut microbiota values of cecum collected at 10 AM (AM) and 10 PM (PM) samples of young and aged male mice at the phylum level. (B) Stacked bar chart of microbiota composition of phyla present at > 1% relative abundance of male mice. (C) Firmicutes to Bacteroidetes (F/B) ratio of male mice. (D) Relative abundance of Verrucomicrobia of male mice. (E) Relative abundance of Cyanobacteria of male mice. (F) Stacked bar chart of microbiota composition of phyla present at > 1% relative abundance of females. (G) F/B ratio of female mice. (H) Relative abundance of Verrucomicrobia of female mice. (I–K) Mean gut microbiota values of AM and PM cecum samples of young and aged mice at the family level. (I) Stacked bar chart of microbiota composition of families present at > 1% relative abundance of male mice. (J) Stacked bar chart of microbiota composition of families present at > 1% relative abundance of female mice. (K) Relative abundance of Sutterellaceae of female mice. n = 3/group, *p < 0.05.

  • Fig. 2 Diurnal differences of gut microbiota between young and aged mice at the genus level. (A–D) Mean gut microbiota values of cecum collected at 10 AM (AM) and 10 PM (PM) samples of young and aged male mice. (A) Relative abundance of Rikenella. (B) Relative abundance of Rikenellaceae RC9 gut group. (C) Relative abundance of Lachnospiraceae NK4A136 group. (D) Relative abundance of Ruminococcaceae UCG-014. (E–I) Mean gut microbiota values of AM and PM cecum samples of young and aged female mice. (E) Relative abundance of Alloprevotella. (F) Relative abundance of Lachnospiraceae NK4A136 group. (G) Relative abundance of Lachnospiraceae UCG-001. (H) Relative abundance of Ruminiclostridium. (I) Relative abundance of Parasutterella. n = 3/group, *p < 0.05.


Reference

1. Bishehsari F, Voigt RM, Keshavarzian A. 2020; Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat Rev Endocrinol. 16:731–739. DOI: 10.1038/s41574-020-00427-4. PMID: 33106657. PMCID: PMC8085809.
Article
2. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, inivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT. 2010; Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 328:228–231. DOI: 10.1126/science.1179721. PMID: 20203013. PMCID: PMC4714868.
Article
3. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI. 2008; Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 105:16767–16772. DOI: 10.1073/pnas.0808567105. PMID: 18931303. PMCID: PMC2569967.
Article
4. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006; An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 444:1027–1031. DOI: 10.1038/nature05414. PMID: 17183312.
Article
5. Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M. 2016; Gut microbiota and extreme longevity. Curr Biol. 26:1480–1485. DOI: 10.1016/j.cub.2016.04.016. PMID: 27185560.
Article
6. Rehman T. 2012; Role of the gut microbiota in age-related chronic inflammation. Endocr Metab Immune Disord Drug Targets. 12:361–367. DOI: 10.2174/187153012803832620. PMID: 23017185.
Article
7. Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F, Nielsen J. 2012; Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 3:1245. DOI: 10.1038/ncomms2266. PMID: 23212374. PMCID: PMC3538954.
Article
8. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E, Shannon KM. 2015; Colonic bacterial composition in Parkinson's disease. Mov Disord. 30:1351–1360. DOI: 10.1002/mds.26307. PMID: 26179554.
Article
9. Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, Ferrari C, Guerra UP, Paghera B, Muscio C, Bianchetti A, Volta GD, Turla M, Cotelli MS, Gennuso M, Prelle A, Zanetti O, Lussignoli G, Mirabile D, Bellandi D, et al. 2017; Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 49:60–68. DOI: 10.1016/j.neurobiolaging.2016.08.019. PMID: 27776263.
Article
10. Burcelin R, Serino M, Chabo C, Blasco-Baque V, Amar J. 2011; Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol. 48:257–273. DOI: 10.1007/s00592-011-0333-6. PMID: 21964884. PMCID: PMC3224226.
Article
11. Buford TW. 2017; (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome. 5:80. DOI: 10.1186/s40168-017-0296-0. PMID: 28709450. PMCID: PMC5512975.
Article
12. DeJong EN, Surette MG, Bowdish DME. 2020; The gut microbiota and unhealthy aging: disentangling cause from consequence. Cell Host Microbe. 28:180–189. DOI: 10.1016/j.chom.2020.07.013. PMID: 32791111.
Article
13. Mohawk JA, Green CB, Takahashi JS. 2012; Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 35:445–462. DOI: 10.1146/annurev-neuro-060909-153128. PMID: 22483041. PMCID: PMC3710582.
Article
14. Schmalle V, Lorentz A. 2020; Role of the microbiota in circadian rhythms of the host. Chronobiol Int. 37:301–310. DOI: 10.1080/07420528.2020.1726374. PMID: 32050806.
Article
15. Zarrinpar A, Chaix A, Yooseph S, Panda S. 2014; Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20:1006–1017. DOI: 10.1016/j.cmet.2014.11.008. PMID: 25470548. PMCID: PMC4255146.
Article
16. Liang X, Bushman FD, FitzGerald GA. 2015; Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci U S A. 112:10479–10484. DOI: 10.1073/pnas.1501305112. PMID: 26240359. PMCID: PMC4547234.
Article
17. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, Kuperman Y, Biton I, Gilad S, Harmelin A, Shapiro H, Halpern Z, Segal E, Elinav E. 2014; Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 159:514–529. DOI: 10.1016/j.cell.2014.09.048. PMID: 25417104.
Article
18. Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, Pierre JF, Heneghan AF, Nadimpalli A, Hubert N, Zale E, Wang Y, Huang Y, Theriault B, Dinner AR, Musch MW, Kudsk KA, Prendergast BJ, Gilbert JA, Chang EB. 2015; Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 17:681–689. DOI: 10.1016/j.chom.2015.03.006. PMID: 25891358. PMCID: PMC4433408.
Article
19. Thaiss CA, Levy M, Korem T, Dohnalová L, Shapiro H, Jaitin DA, David E, Winter DR, Gury-BenAri M, Tatirovsky E, Tuganbaev T, Federici S, Zmora N, Zeevi D, Dori-Bachash M, Pevsner-Fischer M, Kartvelishvily E, Brandis A, Harmelin A, Shibolet O, et al. 2016; Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell. 167:1495–1510.e12. DOI: 10.1016/j.cell.2016.11.003. PMID: 27912059.
Article
20. Banks G, Nolan PM, Peirson SN. 2016; Reciprocal interactions between circadian clocks and aging. Mamm Genome. 27:332–340. DOI: 10.1007/s00335-016-9639-6. PMID: 27137838. PMCID: PMC4935744.
Article
21. Nakamura TJ, Nakamura W, Yamazaki S, Kudo T, Cutler T, Colwell CS, Block GD. 2011; Age-related decline in circadian output. J Neurosci. 31:10201–10205. DOI: 10.1523/JNEUROSCI.0451-11.2011. PMID: 21752996. PMCID: PMC3155746.
Article
22. Shin JA, Jeong SI, Kim M, Yoon JC, Kim HS, Park EM. 2015; Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice. Brain Behav Immun. 50:221–231. DOI: 10.1016/j.bbi.2015.07.008. PMID: 26184082.
Article
23. Jeong SI, Shin JA, Cho S, Kim HW, Lee JY, Kang JL, Park EM. 2016; Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice. Neurobiol Aging. 44:74–84. DOI: 10.1016/j.neurobiolaging.2016.04.007. PMID: 27318135.
Article
24. Crespo-Piazuelo D, Estellé J, Revilla M, Criado-Mesas L, Ramayo-Caldas Y, Óvilo C, Fernández AI, Ballester M, Folch JM. 2018; Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions. Sci Rep. 8:12727. DOI: 10.1038/s41598-018-30932-6. PMID: 30143657. PMCID: PMC6109158.
Article
25. Kim KA, Jeong JJ, Yoo SY, Kim DH. 2016; Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiol. 16:9. DOI: 10.1186/s12866-016-0625-7. PMID: 26772806. PMCID: PMC4715324.
Article
26. Spychala MS, Venna VR, Jandzinski M, Doran SJ, Durgan DJ, Ganesh BP, Ajami NJ, Putluri N, Graf J, Bryan RM, McCullough LD. 2018; Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann Neurol. 84:23–36. DOI: 10.1002/ana.25250. PMID: 29733457. PMCID: PMC6119509.
Article
27. Park SH, Kim KA, Ahn YT, Jeong JJ, Huh CS, Kim DH. 2015; Comparative analysis of gut microbiota in elderly people of urbanized towns and longevity villages. BMC Microbiol. 15:49. DOI: 10.1186/s12866-015-0386-8. PMID: 25887483. PMCID: PMC4345030.
Article
28. Hoffman JD, Parikh I, Green SJ, Chlipala G, Mohney RP, Keaton M, Bauer B, Hartz AMS, Lin AL. 2017; Age drives distortion of brain metabolic, vascular and cognitive functions, and the gut microbiome. Front Aging Neurosci. 9:298. DOI: 10.3389/fnagi.2017.00298. PMID: 28993728. PMCID: PMC5622159.
Article
29. Yoon CH, Ryu JS, Moon J, Kim MK. 2021; Association between aging-dependent gut microbiome dysbiosis and dry eye severity in C57BL/6 male mouse model: a pilot study. BMC Microbiol. 21:106. DOI: 10.1186/s12866-021-02173-7. PMID: 33832437. PMCID: PMC8033717.
Article
30. Lin CH, Chen CC, Chiang HL, Liou JM, Chang CM, Lu TP, Chuang EY, Tai YC, Cheng C, Lin HY, Wu MS. 2019; Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson's disease. J Neuroinflammation. 16:129. DOI: 10.1186/s12974-019-1528-y. PMID: 31248424. PMCID: PMC6598278.
Article
31. Langille MG, Meehan CJ, Koenig JE, Dhanani AS, Rose RA, Howlett SE, Beiko RG. 2014; Microbial shifts in the aging mouse gut. Microbiome. 2:50. DOI: 10.1186/s40168-014-0050-9. PMID: 25520805. PMCID: PMC4269096.
Article
32. Lee SM, Kim N, Yoon H, Kim YS, Choi SI, Park JH, Lee DH. 2021; Compositional and functional changes in the gut microbiota in irritable bowel syndrome patients. Gut Liver. 15:253–261. DOI: 10.5009/gnl19379. PMID: 32457278. PMCID: PMC7960967.
Article
33. Liu Y, Li T, Alim A, Ren D, Zhao Y, Yang X. 2019; Regulatory effects of stachyose on colonic and hepatic inflammation, gut microbiota dysbiosis, and peripheral CD4+ T cell distribution abnormality in high-fat diet-fed mice. J Agric Food Chem. 67:11665–11674. DOI: 10.1021/acs.jafc.9b04731. PMID: 31588753.
Article
34. Shao X, Sun C, Tang X, Zhang X, Han D, Liang S, Qu R, Hui X, Shan Y, Hu L, Fang H, Zhang H, Wu X, Chen C. 2020; Anti-inflammatory and intestinal microbiota modulation properties of Jinxiang garlic (Allium sativum L.) polysaccharides toward dextran sodium sulfate-induced colitis. J Agric Food Chem. 68:12295–12309. DOI: 10.1021/acs.jafc.0c04773. PMID: 33095019.
35. Chen Q, Wu J, Dong X, Yin H, Shi X, Su S, Che B, Li Y, Yang J. 2021; Gut flora-targeted photobiomodulation therapy improves senile dementia in an Aß-induced Alzheimer's disease animal model. J Photochem Photobiol B. 216:112152. DOI: 10.1016/j.jphotobiol.2021.112152. PMID: 33610085.
Article
36. Wang CS, Li WB, Wang HY, Ma YM, Zhao XH, Yang H, Qian JM, Li JN. 2018; VSL#3 can prevent ulcerative colitis-associated carcinogenesis in mice. World J Gastroenterol. 24:4254–4262. DOI: 10.3748/wjg.v24.i37.4254. PMID: 30310258. PMCID: PMC6175759.
Article
37. Chen YJ, Wu H, Wu SD, Lu N, Wang YT, Liu HN, Dong L, Liu TT, Shen XZ. 2018; Parasutterella, in association with irritable bowel syndrome and intestinal chronic inflammation. J Gastroenterol Hepatol. 33:1844–1852. DOI: 10.1111/jgh.14281. PMID: 29744928.
Article
38. Kiely CJ, Pavli P, O'Brien CL. 2018; The microbiome of translocated bacterial populations in patients with and without inflammatory bowel disease. Intern Med J. 48:1346–1354. DOI: 10.1111/imj.13998. PMID: 29893034.
Article
39. Wang J, Feng W, Zhang S, Chen L, Tang F, Sheng Y, Ao H, Peng C. 2019; Gut microbial modulation in the treatment of chemotherapy-induced diarrhea with Shenzhu Capsule. BMC Complement Altern Med. 19:126. DOI: 10.1186/s12906-019-2548-y. PMID: 31185967. PMCID: PMC6560905.
Article
40. Tu MY, Han KY, Chang GR, Lai GD, Chang KY, Chen CF, Lai JC, Lai CY, Chen HL, Chen CM. 2020; Kefir peptides prevent estrogen deficiency-induced bone loss and modulate the structure of the gut microbiota in ovariectomized mice. Nutrients. 12:3432. DOI: 10.3390/nu12113432. PMID: 33182364. PMCID: PMC7695289.
Article
41. Smolensky MH, Portaluppi F, Manfredini R, Hermida RC, Tiseo R, Sackett-Lundeen LL, Haus EL. 2015; Diurnal and twenty-four hour patterning of human diseases: acute and chronic common and uncommon medical conditions. Sleep Med Rev. 21:12–22. DOI: 10.1016/j.smrv.2014.06.005. PMID: 25129839.
Article
42. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS. 2013; Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 339:1084–1088. DOI: 10.1126/science.1233521. PMID: 23328391.
Article
43. Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, Antonopoulos D, Umesaki Y, Chervonsky AV. 2013; Gender bias in autoimmunity is influenced by microbiota. Immunity. 39:400–412. DOI: 10.1016/j.immuni.2013.08.013. PMID: 23973225. PMCID: PMC3822899.
Article
44. Insenser M, Murri M, Del Campo R, Martínez-García MÁ, Fernández-Durán E, Escobar-Morreale HF. 2018; Gut microbiota and the polycystic ovary syndrome: influence of sex, sex hormones, and obesity. J Clin Endocrinol Metab. 103:2552–2562. DOI: 10.1210/jc.2017-02799. PMID: 29897462.
Article
45. Razavi AC, Potts KS, Kelly TN, Bazzano LA. 2019; Sex, gut microbiome, and cardiovascular disease risk. Biol Sex Differ. 10:29. DOI: 10.1186/s13293-019-0240-z. PMID: 31182162. PMCID: PMC6558780.
Article
46. Cuervo-Zanatta D, Garcia-Mena J, Perez-Cruz C. 2021; Gut microbiota alterations and cognitive impairment are sexually dissociated in a transgenic mice model of Alzheimer's disease. J Alzheimers Dis. 82(s1):S195–S214. DOI: 10.3233/JAD-201367. PMID: 33492296.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr