Anesth Pain Med.  2021 Jul;16(3):273-278. 10.17085/apm.20099.

Ultrasound-guided insertion of peripherally inserted central catheter after anesthetic induction in children undergoing surgery for moyamoya disease - Thirty cases report-

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Korea
  • 2Department of Anesthesiology and Pain Medicine, Konyang University Hospital, Daejeon, Korea
  • 3Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea

Abstract

Background
Pediatric patients with moyamoya disease are vulnerable to ischemic attacks following physical or emotional stress, such as those experienced during blood sampling. A central venous catheter might be beneficial for blood sampling, and a peripherally inserted central catheter (PICC) is a considerable option for central venous access. However, PICC insertion during anesthetic management is relatively rare. Case: Thirty cases of ultrasound-guided PICC insertion were performed in children undergoing surgery for moyamoya disease after anesthetic induction. Positioning was successful in 22 cases, and 5 were malpositioned. In three cases, the peripheral insertion failed. Adjustment of the insertion depth was performed in nine cases. No complications related to catheterization were observed during the procedure or the catheter indwelling period.
Conclusions
We report the successful use of PICC in children undergoing surgery for moyamoya disease with a considerable success rate and low incidence of malpositioning or complications.

Keyword

Children; General anesthesia; Central venous catheterization; Moyamoya disease; Neurosurgery; Ultrasonography

Figure

  • Fig. 1. Examples of postoperative chest radiographs for confirmation of the tip of peripherally inserted central catheters. The tip is located at the superior vena cava (A), ipsilateral internal jugular vein (B), and contralateral brachiocephalic vein (C).


Reference

1. Schwengel DA, McGready J, Berenholtz SM, Kozlowski LJ, Nichols DG, Yaster M. Peripherally inserted central catheters: a randomized, controlled, prospective trial in pediatric surgical patients. Anesth Analg. 2004; 99:1038–43.
2. Westergaard B, Classen V, Walther-Larsen S. Peripherally inserted central catheters in infants and children - indications, techniques, complications and clinical recommendations. Acta Anaesthesiol Scand. 2013; 57:278–87.
3. Abedin S, Kapoor G. Peripherally inserted central venous catheters are a good option for prolonged venous access in children with cancer. Pediatr Blood Cancer. 2008; 51:251–5.
4. Chrisman HB, Omary RA, Nemcek AA, Ryu RK, Saker MB, Vogelzang RL. Peripherally inserted central catheters: guidance with use of US versus venography in 2,650 patients. J Vasc Interv Radiol. 1999; 10:473–5.
5. Pittiruti M, Brutti A, Celentano D, Pomponi M, Biasucci DG, Annetta MG, et al. Clinical experience with power-injectable PICCs in intensive care patients. Crit Care. 2012; 16:R21.
6. Wall C, Moore J, Thachil J. Catheter-related thrombosis: a practical approach. J Intensive Care Soc. 2016; 17:160–7.
7. Venkatesan T, Sen N, Korula PJ, Surendrababu NR, Raj JP, John P, et al. Blind placements of peripherally inserted antecubital central catheters: initial catheter tip position in relation to carina. Br J Anaesth. 2007; 98:83–8.
8. van Boxtel AJH. Maneuvers, precautions, and tricks for PICC positioning procedure. In: Peripherally inserted central venous catheters. Edited by Sandrucci S, Mussa B: Milano, Springer. 2014, p 55.
9. Ragasa J, Shah N, Watson RC. Where antecubital catheters go: a study under fluoroscopic control. Anesthesiology. 1989; 71:378–80.
10. Kwon S, Son SM, Lee SH, Kim JH, Kim H, Kim JY, et al. Outcomes of bedside peripherally inserted central catheter placement: a retrospective study at a single institution. Acute Crit Care. 2020; 35:31–7.
11. Kim YO, Chung CR, Gil E, Park CM, Suh GY, Ryu JA. Safety and feasibility of ultrasound-guided placement of peripherally inserted central catheter performed by neurointensivist in neurosurgery intensive care unit. PLoS One. 2019; 14:e0217641.
12. Jumani K, Advani S, Reich NG, Gosey L, Milstone AM. Risk factors for peripherally inserted central venous catheter complications in children. JAMA Pediatr. 2013; 167:429–35.
13. Glauser F, Breault S, Rigamonti F, Sotiriadis C, Jouannic AM, Qanadli SD. Tip malposition of peripherally inserted central catheters: a prospective randomized controlled trial to compare bedside insertion to fluoroscopically guided placement. Eur Radiol. 2017; 27:2843–9.
14. Connolly B, Amaral J, Walsh S, Temple M, Chait P, Stephens D. Influence of arm movement on central tip location of peripherally inserted central catheters (PICCs). Pediatr Radiol. 2006; 36:845–50.
15. Grau D, Clarivet B, Lotthé A, Bommart S, Parer S. Complications with peripherally inserted central catheters (PICCs) used in hospitalized patients and outpatients: a prospective cohort study. Antimicrob Resist Infect Control. 2017; 6:18.
16. Ramamurthi A, Chick JFB, Srinivasa RN, Hage AN, Grove JJ, Gemmete JJ, et al. Chest radiograph measurement technique facilitates accurate bedside peripherally inserted central catheter placement in children. Cardiovasc Intervent Radiol. 2018; 41:443–8.
Full Text Links
  • APM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr