Korean J Physiol Pharmacol.  2021 Jul;25(4):321-331. 10.4196/kjpp.2021.25.4.321.

Protective effects of lutein against vancomycin-induced acute renal injury in mice via upregulation of peroxisome proliferatoractivated receptor gamma/nuclear factor erythroid 2-related factor 2 and inhibition nuclear factor-kappaB/caspase 3

Affiliations
  • 1Departments of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
  • 2Departments of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
  • 3Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
  • 4Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia

Abstract

Vancomycin, an antibiotic used occasionally as a last line of treatment for methicillin-resistant Staphylococcus aureus, is reportedly associated with nephrotoxicity. This study aimed at evaluating the protective effects of lutein against vancomycin-induced acute renal injury. Peroxisome proliferator-activated receptor gamma (PPARγ) and its associated role in renoprotection by lutein was also examined. Male BALB/c mice were divided into six treatment groups: control with normal saline, lutein (200 mg/kg), vancomycin (250 mg/kg), vancomycin (500 mg/kg), vancomycin (250 mg/kg) with lutein, and vancomycin (500 mg/kg) with lutein groups; they were euthanized after 7 days of treatment. Thereafter, samples of blood, urine, and kidney tissue of the mice were analyzed, followed by the determination of levels of N-acetyl-β-D-glucosaminidase (NAG) in the urine, renal creatine kinase; protein carbonyl, malondialdehyde, and caspase-3 in the kidney; and the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-kappaB (NF-κB) in renal tissue. Results showed that the levels of protein carbonyl and malondialdehyde, and the activity of NAG, creatine kinase and caspase-3, were significantly increased in the vancomycin-treatment groups. Moreover, the levels of Nrf2 significantly decreased, while NF-κB expression increased. Lutein ameliorated these effects, and significantly increased PPARγ expression. Furthermore, it attenuated vancomycin-induced histological alterations such as, tissue necrosis and hypertrophy. Therefore, we conclude that lutein protects against vancomycin-induced renal injury by potentially upregulating PPARγ/Nrf2 expression in the renal tissues, and consequently downregulating the pathways: inflammation by NF-κB and apoptosis by caspase-3.

Keyword

Acute renal injury; Caspase-3; Lutein; PPAR gamma; Vancomycin

Figure

  • Fig. 1 Effect of lutein on (A) N-acetyl-β-D-glucosaminidase (NAG), (B) creatine kinase, (C) protein carbonyl, (D) malondialdehyde, and (E) caspase-3, in low (250 mg/kg) and high (500 mg/kg) dose vancomycin-induced renal injury in mice. Results are mean ± SD. L, lutein 200 mg/kg; VL, vancomycin 250 mg/kg; VH, vancomycin 500 mg/kg. *Shows significant different (p < 0.05) from control, while §indicates significant different (p < 0.05) from VL-treatment, and VH-treatment groups, respectively.

  • Fig. 2 Effect of lutein on histopathological changes in low (250 mg/kg) and high (500 mg/kg) dose vancomycin-induced renal injury in mice (A–F: H&E ×40). In (A, B) thick black arrow: normal glomerulus, thin black arrow: normal renal tubules. (C) Thick black arrow: abnormal dilatation of the renal tubules, thin black arrow: renal tubules filled with leukocytes, blue arrow: infiltration of inflammatory cells in the renal parenchyma. (D) Showing recovery of the parenchyma of the kidney (thick arrow and thin black arrows). (E) Thick black arrow: obliteration of renal tubules filled with necrotic cells, thin black arrow: necrosis of the epithelium of renal tubules. (F) Thick and thin black arrows: showing recovery of the parenchyma of kidney with no observed necrosis of epithial lining of renal tubules.

  • Fig. 3 Effect of lutein on (A) peroxisome proliferator-activated receptor gamma (PPARγ), (B) peroxisome proliferator-activated receptor gamma (PPARγ) mRNA and (C), nuclear factor erythroid 2-related factor 2 (Nrf2) expressions respectively, in low (250 mg/kg) and high (500 mg/kg) dose vancomycin-induced renal injury in mice. Results are represented as mean ± SD. L, lutein; VL, 250 mg/kg vancomycin; VH, 500 mg/kg vancomycin; VL + L, 250 mg/kg + lutein; VH + L, 500 mg/kg + lutein. *Represent significant difference (p < 0.05) between control and vancomycin treated groups, while †represents significant difference (p < 0.05) between vancomycin treated and lutein plus vancomycin treatment groups. #Represents significant difference (p < 0.05) between control and lutein.

  • Fig. 4 Effect of lutein on nuclear factor-kappaB (NF-κB) expression in low (250 mg/kg) and high (500 mg/kg) dose vancomycin-induced renal injury in mice. Results are represented as mean ± SD. L, lutein; VL, 250 mg/kg vancomycin; VH, 500 mg/kg vancomycin; VL + L, 250 mg/kg + lutein; VH + L = 500 mg/kg + lutein. *Represent significant difference (p < 0.05) between control and vancomycin treated groups, while †represents significant difference (p < 0.05) between vancomycin treated and lutein plus vancomycin treatment groups.


Reference

1. Jorgensen SCJ, Murray KP, Lagnf AM, Melvin S, Bhatia S, Shamim MD, Smith JR, Brade KD, Simon SP, Nagel J, Williams KS, Ortwine JK, Veve MP, Truong J, Huang DB, Davis SL, Rybak MJ. 2020; A multicenter evaluation of vancomycin-associated acute kidney injury in hospitalized patients with acute bacterial skin and skin structure infections. Infect Dis Ther. 9:89–106. DOI: 10.1007/s40121-019-00278-1. PMID: 31983021. PMCID: PMC7054514.
Article
2. Dieterich C, Puey A, Lin S, Swezey R, Furimsky A, Fairchild D, Mirsalis JC, Ng HH. 2009; Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates. Toxicol Sci. 107:258–269. DOI: 10.1093/toxsci/kfn203. PMID: 18930951. PMCID: PMC2638642.
Article
3. Lodise TP, Lomaestro B, Graves J, Drusano GL. 2008; Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 52:1330–1336. DOI: 10.1128/AAC.01602-07. PMID: 18227177. PMCID: PMC2292536.
Article
4. Rybak M, Lomaestro B, Rotschafer JC, Moellering R Jr, Craig W, Billeter M, Dalovisio JR, Levine DP. 2009; Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 66:82–98. DOI: 10.2146/ajhp080434. PMID: 19106348.
Article
5. Qin X, Tsoi MF, Zhao X, Zhang L, Qi Z, Cheung BMY. 2020; Vancomycin-associated acute kidney injury in Hong Kong in 2012-2016. BMC Nephrol. 21:41. DOI: 10.1186/s12882-020-1704-4. PMID: 32013870. PMCID: PMC6998253.
Article
6. Nishino Y, Takemura S, Minamiyama Y, Hirohashi K, Ogino T, Inoue M, Okada S, Kinoshita H. 2003; Targeting superoxide dismutase to renal proximal tubule cells attenuates vancomycin-induced nephrotoxicity in rats. Free Radic Res. 37:373–379. DOI: 10.1080/1071576031000061002. PMID: 12747731.
Article
7. Suntres ZE. 2011; Liposomal antioxidants for protection against oxidant-induced damage. J Toxicol. 2011:152474. DOI: 10.1155/2011/152474. PMID: 21876690. PMCID: PMC3157762.
Article
8. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. 2016; Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 25:119–146. DOI: 10.1089/ars.2016.6665. PMID: 26906267. PMCID: PMC4948213.
Article
9. Stanton RC. 2011; Oxidative stress and diabetic kidney disease. Curr Diab Rep. 11:330–336. DOI: 10.1007/s11892-011-0196-9. PMID: 21557044.
Article
10. Kim JE, Clark RM, Park Y, Lee J, Fernandez ML. 2012; Lutein decreases oxidative stress and inflammation in liver and eyes of guinea pigs fed a hypercholesterolemic diet. Nutr Res Pract. 6:113–119. DOI: 10.4162/nrp.2012.6.2.113. PMID: 22586499. PMCID: PMC3349032.
Article
11. Ma Y, Shi M, Wang Y, Liu J. 2020; PPARγ and its agonists in chronic kidney disease. Int J Nephrol. 2020:2917474. DOI: 10.1155/2020/2917474. PMID: 32158560. PMCID: PMC7060840.
Article
12. Korbecki J, Bobiński R, Dutka M. 2019; Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res. 68:443–458. DOI: 10.1007/s00011-019-01231-1. PMID: 30927048. PMCID: PMC6517359.
Article
13. Selvaraj RK, Klasing KC. 2006; Lutein and eicosapentaenoic acid interact to modify iNOS mRNA levels through the PPARgamma/RXR pathway in chickens and HD11 cell lines. J Nutr. 136:1610–1616. DOI: 10.1093/jn/136.6.1610. PMID: 16702329.
14. Zhang B, Lo C, Shen L, Sood R, Jones C, Cusmano-Ozog K, Park-Snyder S, Wong W, Jeng M, Cowan T, Engleman EG, Zehnder JL. 2011; The role of vanin-1 and oxidative stress-related pathways in distinguishing acute and chronic pediatric ITP. Blood. 117:4569–4579. DOI: 10.1182/blood-2010-09-304931. PMID: 21325602.
Article
15. García-Rojas P, Antaramian A, González-Dávalos L, Villarroya F, Shimada A, Varela-Echavarría A, Mora O. 2010; Induction of peroxisomal proliferator-activated receptor gamma and peroxisomal proliferator-activated receptor gamma coactivator 1 by unsaturated fatty acids, retinoic acid, and carotenoids in preadipocytes obtained from bovine white adipose tissue1,2. J Anim Sci. 88:1801–1808. DOI: 10.2527/jas.2009-2579. PMID: 20154154.
16. Qu S, Dai C, Lang F, Hu L, Tang Q, Wang H, Zhang Y, Hao Z. 2018; Rutin attenuates vancomycin-induced nephrotoxicity by ameliorating oxidative stress, apoptosis, and inflammation in rats. Antimicrob Agents Chemother. 63:e01545–e01518. DOI: 10.1128/AAC.01545-18. PMID: 30397060. PMCID: PMC6325182.
Article
17. Nakamura T, Hashimoto Y, Kokuryo T, Inui KI. 1998; Effects of fosfomycin and imipenem/cilastatin on nephrotoxicity and renal excretion of vancomycin in rats. Pharm Res. 15:734–738. DOI: 10.1023/a:1011971019868. PMID: 9619782.
18. Vasudeva V, Tenkanidiyoor YS, Peter AJ, Shetty J, Lakshman SP, Fernandes R, Patali KA. 2018; Radioprotective efficacy of lutein in ameliorating electron beam radiation-induced oxidative injury in Swiss albino mice. Iran J Med Sci. 43:41–51. PMID: 29398751. PMCID: PMC5775993.
19. Horak E, Hopfer SM, Sunderman FW Jr. 1981; Spectrophotometric assay for urinary N-acetyl-beta-D-glucosaminidase activity. Clin Chem. 27:1180–1185. DOI: 10.1093/clinchem/27.7.1180. PMID: 7237781.
Article
20. Hughes BP. 1962; A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta. 7:597–603. DOI: 10.1016/0009-8981(62)90137-7. PMID: 13955534.
Article
21. Velmurugan G, Venkatesh Babu DD, Ramasamy S. 2013; Prolonged monocrotophos intake induces cardiac oxidative stress and myocardial damage in rats. Toxicology. 307:103–108. DOI: 10.1016/j.tox.2012.11.022. PMID: 23228476.
Article
22. Ohkawa H, Ohishi N, Yagi K. 1979; Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 95:351–358. DOI: 10.1016/0003-2697(79)90738-3. PMID: 36810.
Article
23. Rojas-Franco P, Franco-Colín M, Camargo MEM, Carmona MME, Ortíz-Butrón M del R E, Blas-Valdivia V, Cano-Europa E. 2018; Phycobiliproteins and phycocyanin of Arthrospira maxima (Spirulina) reduce apoptosis promoters and glomerular dysfunction in mercury-related acute kidney injury. Toxicol Res Appl. 2:1–10. DOI: 10.1177/2397847318805070.
Article
24. Ahn SY, Cho CH, Park KG, Lee HJ, Lee S, Park SK, Lee IK, Koh GY. 2004; Tumor necrosis factor-alpha induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF-alpha-induced fractalkine expression. Am J Pathol. 164:1663–1672. DOI: 10.1016/S0002-9440(10)63725-X. PMID: 15111313. PMCID: PMC1615656.
25. Selvaraj RK, Shanmugasundaram R, Klasing KC. 2010; Effects of dietary lutein and PUFA on PPAR and RXR isomer expression in chickens during an inflammatory response. Comp Biochem Physiol A Mol Integr Physiol. 157:198–203. DOI: 10.1016/j.cbpa.2010.06.172. PMID: 20601055.
Article
26. Livak KJ, Schmittgen TD. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25:402–408. DOI: 10.1006/meth.2001.1262. PMID: 11846609.
27. Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, Mueller BA, Pai MP, Wong-Beringer A, Rotschafer JC, Rodvold KA, Maples HD, Lomaestro BM. 2020; Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 40:363–367. DOI: 10.1002/phar.2376. PMID: 32227354.
28. Liu ZG, Qi ZC, Liu WL, Wang WZ. 2015; Lutein protects against ischemia/reperfusion injury in rat kidneys. Mol Med Rep. 11:2179–2184. DOI: 10.3892/mmr.2014.2982. PMID: 25412035.
Article
29. Yoshiyama Y, Yazaki T, Wong PC, Beauchamp D, Kanke M. 2001; The effect of fosfomycin on glycopeptide antibiotic-induced nephrotoxicity in rats. J Infect Chemother. 7:243–246. DOI: 10.1007/s101560170020. PMID: 11810591.
Article
30. Nair SV, Ghanam K, Deshpande J, Juturu V. 2018; Lutein and zeaxanthin isomers induces mitochondrial biogenesis and improves endurance capacity in muscle cells. EC Ophthalmol. 9:658–668.
31. Ouyang B, Li Z, Ji X, Huang J, Zhang H, Jiang C. 2019; The protective role of lutein on isoproterenol-induced cardiac failure rat model through improving cardiac morphology, antioxidant status via positively regulating Nrf2/HO-1 signalling pathway. Pharm Biol. 57:529–535. DOI: 10.1080/13880209.2019.1649436. PMID: 31411934. PMCID: PMC6713179.
Article
32. Cheng F, Zhang Q, Yan FF, Wan JF, Lin CS. 2015; Lutein protects against ischemia/reperfusion injury in rat skeletal muscle by modulating oxidative stress and inflammation. Immunopharmacol Immunotoxicol. 37:329–334. DOI: 10.3109/08923973.2015.1049704. PMID: 26250522.
Article
33. Buonocore D, Rucci S, Vandoni M, Negro M, Marzatico F. 2012; Oxidative system in aged skeletal muscle. Muscles Ligaments Tendons J. 1:85–90. PMID: 23738253. PMCID: PMC3666477.
34. Kim DH, Kwack SJ, Yoon KS, Choi JS, Lee BM. 2015; 4-hydroxynonenal: a superior oxidative biomarker compared to malondialdehyde and carbonyl content induced by carbon tetrachloride in rats. J Toxicol Environ Health A. 78:1051–1062. DOI: 10.1080/15287394.2015.1067505. PMID: 26252470.
Article
35. Havasi A, Borkan SC. 2011; Apoptosis and acute kidney injury. Kidney Int. 80:29–40. DOI: 10.1038/ki.2011.120. PMID: 21562469. PMCID: PMC4625984.
Article
36. Yang B, El Nahas AM, Thomas GL, Haylor JL, Watson PF, Wagner B, Johnson TS. 2001; Caspase-3 and apoptosis in experimental chronic renal scarring. Kidney Int. 60:1765–1776. DOI: 10.1046/j.1523-1755.2001.00013.x. PMID: 11703594.
Article
37. Nataraj J, Manivasagam T, Thenmozhi AJ, Essa MM. 2016; Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress. Nutr Neurosci. 19:237–246. DOI: 10.1179/1476830515Y.0000000010. PMID: 25730317.
Article
38. Fung FK, Law BY, Lo AC. 2016; Lutein attenuates both apoptosis and autophagy upon cobalt (II) chloride-induced hypoxia in rat Műller cells. PLoS One. 11:e0167828. DOI: 10.1371/journal.pone.0167828. PMID: 27936094. PMCID: PMC5148028.
Article
39. Yamashita M, Yoshida T, Suzuki S, Homma K, Hayashi M. 2017; Podocyte-specific NF-κB inhibition ameliorates proteinuria in adriamycin-induced nephropathy in mice. Clin Exp Nephrol. 21:16–26. DOI: 10.1007/s10157-016-1268-6. PMID: 27089875.
Article
40. Lawrence T. 2009; The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 1:a001651. DOI: 10.1101/cshperspect.a001651. PMID: 20457564. PMCID: PMC2882124.
41. Xiao Z, Shan J, Li C, Luo L, Lu J, Li S, Long D, Li Y. 2013; Mechanisms of cyclosporine-induced renal cell apoptosis: a systematic review. Am J Nephrol. 37:30–40. DOI: 10.1159/000345988. PMID: 23295863.
Article
42. Jung ME, Gatch MB, Simpkins JW. 2005; Estrogen neuroprotection against the neurotoxic effects of ethanol withdrawal: potential mechanisms. Exp Biol Med (Maywood). 230:8–22. DOI: 10.1177/153537020523000102. PMID: 15618121.
Article
43. Buhrmann C, Mobasheri A, Busch F, Aldinger C, Stahlmann R, Montaseri A, Shakibaei M. 2011; Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem. 286:28556–28566. DOI: 10.1074/jbc.M111.256180. PMID: 21669872. PMCID: PMC3151097.
44. Corrales P, Izquierdo-Lahuerta A, Medina-Gómez G. 2018; Maintenance of kidney metabolic homeostasis by PPAR gamma. Int J Mol Sci. 19:2063. DOI: 10.3390/ijms19072063. PMID: 30012954. PMCID: PMC6073436.
Article
45. Zhang YF, Wang Q, Su YY, Wang JL, Hua BJ, Yang S, Feng JX, Li HY. 2017; PPAR-γ agonist rosiglitazone protects rat peritoneal mesothelial cells against peritoneal dialysis solution-induced damage. Mol Med Rep. 15:1786–1792. DOI: 10.3892/mmr.2017.6196. PMID: 28259952.
Article
46. Diep QN, Schiffrin EL. 2001; Increased expression of peroxisome proliferator-activated receptor-alpha and -gamma in blood vessels of spontaneously hypertensive rats. Hypertension. 38:249–254. DOI: 10.1161/01.HYP.38.2.249. PMID: 11509485.
47. Kvandova M, Barancik M, Balis P, Puzserova A, Majzunova M, Dovinova I. 2018; The peroxisome proliferator-activated receptor gamma agonist pioglitazone improves nitric oxide availability, renin-angiotensin system and aberrant redox regulation in the kidney of pre-hypertensive rats. J Physiol Pharmacol. 69:231–243. DOI: 10.26402/jpp.2018.2.09. PMID: 29980143.
48. Cho HY, Gladwell W, Wang X, Chorley B, Bell D, Reddy SP, Kleeberger SR. 2010; Nrf2-regulated PPARγ expression is critical to protection against acute lung injury in mice. Am J Respir Crit Care Med. 182:170–182. DOI: 10.1164/rccm.200907-1047OC. PMID: 20224069. PMCID: PMC2913232.
Article
49. Lee C. 2017; Collaborative power of Nrf2 and PPARγ activators against metabolic and drug-induced oxidative injury. Oxid Med Cell Longev. 2017:1378175. DOI: 10.1155/2017/1378175. PMID: 28928902. PMCID: PMC5591982.
Article
50. Hayes JD, Dinkova-Kostova AT. 2014; The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 39:199–218. DOI: 10.1016/j.tibs.2014.02.002. PMID: 24647116.
Article
51. Mahmoud AM, Germoush MO, Alotaibi MF, Hussein OE. 2017; Possible involvement of Nrf2 and PPARγ up-regulation in the protective effect of umbelliferone against cyclophosphamide-induced hepatotoxicity. Biomed Pharmacother. 86:297–306. DOI: 10.1016/j.biopha.2016.12.047. PMID: 28011377.
Article
52. Makarov SS. 2000; NF-kappaB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today. 6:441–448. DOI: 10.1016/S1357-4310(00)01814-1. PMID: 11074370.
53. Jin XH, Ohgami K, Shiratori K, Suzuki Y, Hirano T, Koyama Y, Yoshida K, Ilieva I, Iseki K, Ohno S. 2006; Inhibitory effects of lutein on endotoxin-induced uveitis in Lewis rats. Invest Ophthalmol Vis Sci. 47:2562–2568. DOI: 10.1167/iovs.05-1429. PMID: 16723471.
Article
54. Jesse CR, Bortolatto CF, Wilhelm EA, Roman SS, Prigol M, Nogueira CW. 2014; The peroxisome proliferator-activated receptor-γ agonist pioglitazone protects against cisplatin-induced renal damage in mice. J Appl Toxicol. 34:25–32. DOI: 10.1002/jat.2818. PMID: 22987311.
Article
55. Ibrahim MA, El-Sheikh AA, Khalaf HM, Abdelrahman AM. 2014; Protective effect of peroxisome proliferator activator receptor (PPAR)-α and -γ ligands against methotrexate-induced nephrotoxicity. Immunopharmacol Immunotoxicol. 36:130–137. DOI: 10.3109/08923973.2014.884135. PMID: 24521009.
Article
56. Rafi MM, Kanakasabai S, Gokarn SV, Krueger EG, Bright JJ. 2015; Dietary lutein modulates growth and survival genes in prostate cancer cells. J Med Food. 18:173–181. DOI: 10.1089/jmf.2014.0003. PMID: 25162762.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr