J Korean Neurosurg Soc.  2021 May;64(3):340-345. 10.3340/jkns.2021.0017.

A Tale of the Tail : A Comprehensive Understanding of the “Human Tail”

Affiliations
  • 1Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan

Abstract

Humans do not have tails; however, a congenital anomaly named “human tail” has been recognized since old times. In contrast with its impactful name, the anomaly itself is not fatal, and thus it has not been considered as a clinically serious symptom. However, many case reports suggested that retention of “the tail” is closely associated with spinal cord malformation and should be treated with care by neurosurgeons. Therefore, this review summarizes our knowledge regarding the anatomy, function, and development of the tail as a general structure in mammals. Learning the basic knowledge regarding tail anatomy and development would help clinicians to understand the “human tail” more concisely and to select more appropriate examinations or treatments in relation to this congenital anomaly.

Keyword

Congenital abnormality; Somites; Morphogenesis; Spine

Figure

  • Fig. 1. Anatomy of the tail. A : Caudal vertebrae. B : Basic anatomy of caudal musculatures in primates. 1 : M. abductor caudae medialis, 2 : M. abductor caudae lateralis, 3 : M. extensor caudae lateralis, 4 : M. extensor caudae medialis, 5 : M. iliocaudalis+M. pubocaudalis, 6 : M. ischiocaudalis, 7 : M. flexor caudae longus, 8 : M. flexor caudae brevis.

  • Fig. 2. Tail reduction process during human evolution. A common ancestor species of cercopithecoids and hominoids (Aegyptopithecus zeuxis) possessed a long tail. However, the common ancestral species of hominoids (Proconsul heseloni and Nacholapithecus kerioi) had lost their tails. Humans must also have lost their tails during this period, but no conclusive fossils have been found.

  • Fig. 3. Development of the tail. A : Gradient of gene expression during axial extension and termination. B : Somites in a human embryo. Somites are present up to the tip of the tail. NT : neural tube, RA : retinoic acid, CNH : chordoneural hinge, PSM : presomitic mesoderm.


Reference

References

1. Altmann SA. A field study of the sociobiology of rhesus monkeys, Macaca mulatta. Ann N Y Acad Sci. 102:338–435. 1962.
2. Ankel F. Der canalis sacralis als indikator für die länge der caudalregion der primaten. Folia Primatol (Basel). 3:263–276. 1965.
Article
3. Ankel F. Vertebral morphology of fossil and extant primates in Tuttle R (ed) : The Functional and Evolutionary Biology of Primates. ed 1. New York: Aldine;1972. p. 223–240.
4. Bernstein PL, Smith WJ, Krensky A, Rosene K. Tail positions of Cercopithecus aethiops. Z Tierpsychol. 46:268–278. 1978.
Article
5. Burke AC, Nelson CE, Morgan BA, Tabin C. Hox genes and the evolution of vertebrate axial morphology. Development. 121:333–346. 1995.
6. Dubrulle J, McGrew MJ, Pourquié O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell. 106:219–232. 2001.
Article
7. Economides KD, Zeltser L, Capecchi MR. Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae. Dev Biol. 256:317–330. 2003.
Article
8. Fallon JF, Simandl BK. Evidence of a role for cell death in the disappearance of the embryonic human tail. Am J Anat. 152:111–129. 1978.
Article
9. Favier B, Rijli FM, Fromental-Ramain C, Fraulob V, Chambon P, Dollé P. Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton. Development. 122:449–460. 1996.
Article
10. Fleagle JG. Primate Adaptation and Evolution. ed 3. San Diego: Academic Press;2012.
11. Fooden J. Comparative review of fascicularis-group species of macaques (Primates: Macaca). Fieldiana Zoology. 2006:1–43. 2006.
12. Fooden J, Albrecht GH. Tail-length evolution in fascicularis-group macaques (Cercopithecidae: Macaca). Int J Primatol. 20:431–440. 1999.
13. German RZ. The functional morphology of caudal vertebrae in New World monkeys. Am J Phys Anthropol. 58:453–459. 1982.
Article
14. Hall KR. Behaviour and ecology of the wild patas monkey, Erythrocebus patas, in Uganda. J Zool. 148:15–87. 1966.
Article
15. Harrison RG. On the occurrence of tails in man, with a description of the case reported by Dr. Watson. Bull Johns Hopkins Hosp. 12:96–101. 1901.
Article
16. Itani J. Takasakiyama no saru (Japanese monkeys in Takasakiyama) in Imanishi K (ed) : Nihon-Dobutsuki. Tokyo: Kobunsha;1954.
17. Larson SG, Stern JT Jr. Maintenance of above-branch balance during primate arboreal quadrupedalism: coordinated use of forearm rotators and tail motion. Am J Phys Anthropol. 129:71–81. 2006.
Article
18. Maroto M, Bone RA, Dale JK. Somitogenesis. Development. 139:2453–2456. 2012.
Article
19. Nakatsukasa M, Tsujikawa H, Shimizu D, Takano T, Kunimatsu Y, Nakano Y, et al. Definitive evidence for tail loss in Nacholapithecus, an East African Miocene hominoid. J Hum Evol. 45:179–186. 2003.
Article
20. Nakatsukasa M, Ward CV, Walker A, Teaford MF, Kunimatsu Y, Ogihara N. Tail loss in Proconsul heseloni. J Hum Evol. 46:777–784. 2004.
Article
21. Ojha PR. Tail carriage and dominance in the rhesus monkey, Macaca mulatta. Mammalia. 38:163–170. 1974.
Article
22. Organ JM. Structure and function of platyrrhine caudal vertebrae. Anat Rec (Hoboken). 293:730–745. 2010.
Article
23. Roonwal ML, Tak PC. A field study of subspecific variation in tail form and carriage in the rhesus macaque, Macaca mulatta (Primates). South Asia Bull Zool Surv India. 4:95–101. 1981.
24. Saga Y. The mechanism of somite formation in mice. Curr Opin Genet Dev. 22:331–338. 2012.
Article
25. Sawada A, Shinya M, Jiang YJ, Kawakami A, Kuroiwa A, Takeda H. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development. 128:4873–4880. 2001.
Article
26. Shapiro LJ. Functional morphology of the vertebral column in primates in Gebo D (ed) : Postcranial Adaptation in Nonhuman Primates. DeKalb: Northern Illinois University Press;1993. p. 121–149.
27. Shapiro LJ. Functional morphology of indrid lumbar vertebrae. Am J Phys Anthropol. 98:323–342. 1995.
Article
28. Tojima S. Tail length estimation from sacrocaudal skeletal morphology in catarrhines. Anthropol Sci. 121:13–24. 2013.
Article
29. Tojima S. Variation of the number of proximal caudal vertebrae with tail reduction in old world monkeys. Primates. 55:509–514. 2014.
Article
30. Tojima S. Comparative anatomy of caudal musculature attachments in catarrhines with different tail length. Primate Res. 31:129–135. 2015.
Article
31. Tojima S, Makishima H, Takakuwa T, Yamada S. Tail reduction process during human embryonic development. J Anat. 232:806–811. 2018.
Article
32. Tojima S, Yamada S. Classification of the “human tail”: correlation between position, associated anomalies, and causes. Clin Anat. 33:929–942. 2020.
Article
33. Wada N, Nakata A, Koga T, Tokuriki M. Anatomical structure and action of the tail muscles in the cat. J Vet Med Sci. 56:1107–1112. 1994.
Article
34. Ward CV, Walker A, Teaford MF. Proconsul did not have a tail. J Hum Evol. 21:215–220. 1991.
Article
35. Wilson DR. Tail reduction in Macaca in Tuttle R (ed) : The Functional and Evolutionary Biology of Primates. ed 1. New York: Aldine;1972. p. 241–261.
36. Young T, Rowland JE, van de Ven C, Bialecka M, Novoa A, Carapuco M, et al. Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. Dev Cell. 17:516–526. 2009.
Article
Full Text Links
  • JKNS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr