Anat Cell Biol.  2021 Mar;54(1):93-103. 10.5115/acb.20.200.

Ameliorative effects of curcumin and caffeic acid against short term exposure of waterpipe tobacco smoking on lung, heart and kidney in mice

Affiliations
  • 1Department of Medical Laboratory Sciences, Faculty of Pharmacy, Jadara University, Irbid, Jordan
  • 2Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
  • 3Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
  • 4Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, Jordan

Abstract

This study aims to evaluate the chemopreventive activity of two antioxidants (curcumin [CUM] and caffeic acid [CAF]), focusing on how these antioxidants could reduce cytotoxicity induced by short term secondhand exposure of waterpipe tobacco smoking. Forty-eight adult male BALB/c albino mice were equally divided into four groups. Antioxidants were delivered intraperitoneally, and the exposure to waterpipe smoking (WPS) was performed using a smoking machine. This experiment lasts for 14 consecutive days. Serum were collected from mice before dissection to quantify the activity of some liver enzymes, kidney function tests and proinflammatory cytokines. Lung, heart, and kidney were isolated and processed for light microscopy technique. Parallel treatment of CUM or CAF along with exposure to WPS showed less inflammation, less vacuolized, and more inflated alveoli, less deteriorations in cortex part of kidney, and less disintegration of cardiac myofibers in comparison to waterpipe only. Besides, CUM and CAF significantly reduced the activity of aspartate aminotransferase and proinflammatory cytokines. CUM and CAF were found to have anti-inflammatory and ameliorative effects against the cytotoxicity induced by exposure to waterpipe tobacco smoking, and CUM showed better chemopreventive activity than CAF.

Keyword

Antioxidants; Biochemical parameters; Histopathology; Hookah; Proinflammatory cytokines

Figure

  • Fig. 1 The main components of this study (WPS, CUM, and CAF); (A) shows a typical waterpipe with a brief illustration of its parts. Chemical structure of CUM (B) and CAF (C) with three-dimensional conformer represented in ball and stick model. CAF, caffeic acid; CUM, curcumin; WPS, waterpipe smoking. Adapted from Bhatnagar et al. Circulation 2019;139:e917-36, according to the Creative Commons license PubChem [1].

  • Fig. 2 List of toxicant contents generated from tobacco-based waterpipe smoking, according to Shihadeh et al. [5]. Adapted from Shihadeh et al. Tob Control 2015;24(Suppl 1):i22-30 [5].

  • Fig. 3 Bar charts for illustration level of different liver function, kidney function, and proinflammatory cytokines in serum samples of albino mice; (A) for the concentration of ALT; (B) for the concentration of AST; (C) for the concentration of LDH; (D) for quantifying the level of creatinine; (E) for the level of BUN; (F) shows the level for IL-1β; (G) shows the level for IL-6, and (H) shows the level for TNF-α. Asterisks (*, **, ***) indicates for (P<0.05, P<0.01, P<0.001) respectively, and (NS) indicates for no significant result when P≥0.05. Significance against the control group written in blue color, whereas against WPS group written in red. WPS, WPS+CUM, and WPS+CAF respectively. ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CAF, caffeic acid; CUM, curcumin; IL-1β, interleukin-1 beta; IL-6, interleukin-6; LDH, lactate dehydrogenase; NS, not significant; TNF-α, tumor necrosis factor-alpha; WPS, waterpipe smoking.

  • Fig. 4 Thin sections of 5 µm for the lung of different experimental groups in this study; (A) represents the control group; (B) for WPS; (C) for CUM+WPS; (D) for CAF+WPS. CAF, caffeic acid; CUM, curcumin; WPS, waterpipe smoking. Sections were stained with H&E, magnification, ×400. Scale bars=50 µm, n=13 (A–D).

  • Fig. 5 Thin sections of 5 µm for the heart of different experimental groups in this study; (A) represents the control group; (B) for WPS; (C) for CUM+WPS; (D) for CAF+WPS. CAF, caffeic acid; CUM, curcumin; WPS, waterpipe smoking. Sections were stained with H&E, magnification, ×400. Scale bars=50 µm, n=13 (A–D).

  • Fig. 6 Thin sections of 5 µm for the kidney of different experimental groups in this study; (A) represents the control group; (B) for WPS; (C) for CUM+ WPS; (D) for CAF+WPS. CAF, caffeic acid; CUM, curcumin; WPS, waterpipe smoking. Sections were stained with H&E, magnification, ×400. Scale bars= 50 µm, n=13 (A–D).


Reference

References

1. Bhatnagar A, Maziak W, Eissenberg T, Ward KD, Thurston G, King BA, Sutfin EL, Cobb CO, Griffiths M, Goldstein LB, Rezk-Hanna M. 2019; Water pipe (hookah) smoking and cardiovascular disease risk: a scientific statement From the American Heart Association. Circulation. 139:e917–36. DOI: 10.1161/CIR.0000000000000671. PMCID: PMC6600812. PMID: 30845826.
Article
2. WHO Study Group on Tobacco Product Regulation (TobReg). 2015. Waterpipe tobacco smoking: health effects, research needs and recommended actions for regulators. 2nd ed. WHO;Geneva:
3. Jukema JB, Bagnasco DE, Jukema RA. 2014; Waterpipe smoking: not necessarily less hazardous than cigarette smoking: possible consequences for (cardiovascular) disease. Neth Heart J. 22:91–9. DOI: 10.1007/s12471-013-0501-0. PMID: 24307377. PMCID: PMC3931860.
4. Kaplan B, Sussan T, Rule A, Moon K, Grau-Perez M, Olmedo P, Chen R, Carkoglu A, Levshin V, Wang L, Watson C, Blount B, Calafat AM, Jarrett J, Caldwell K, Wang Y, Breysse P, Strickland P, Cohen J, Biswal S, Navas-Acien A. 2019; Waterpipe tobacco smoke: characterization of toxicants and exposure biomarkers in a cross-sectional study of waterpipe employees. Environ Int. 127:495–502. DOI: 10.1016/j.envint.2019.03.074. PMID: 30981020. PMCID: PMC6513716.
Article
5. Shihadeh A, Schubert J, Klaiany J, El Sabban M, Luch A, Saliba NA. 2015; Toxicant content, physical properties and biological activity of waterpipe tobacco smoke and its tobacco-free alternatives. Tob Control. 24(Suppl 1):i22–30. DOI: 10.1136/tobaccocontrol-2014-051907. PMID: 25666550. PMCID: PMC4345918.
Article
6. Pryor WA, Stone K, Zang LY, Bermúdez E. 1998; Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage. Chem Res Toxicol. 11:441–8. DOI: 10.1021/tx970159y. PMID: 9585474.
Article
7. Alsaad AM, Al-Arifi MN, Maayah ZH, Attafi IM, Alanazi FE, Belali OM, Alhoshani A, Asiri YA, Korashy HM. 2019; Genotoxic impact of long-term cigarette and waterpipe smoking on DNA damage and oxidative stress in healthy subjects. Toxicol Mech Methods. 29:119–27. DOI: 10.1080/15376516.2018.1528650. PMID: 30273082.
Article
8. Hadidi KA, Mohammed FI. 2004; Nicotine content in tobacco used in hubble-bubble smoking. Saudi Med J. 25:912–7. PMID: 15235699.
9. Chaouachi K. 2009; Hookah (Shisha, Narghile) smoking and environmental tobacco smoke (ETS). A critical review of the relevant literature and the public health consequences. Int J Environ Res Public Health. 6:798–843. DOI: 10.3390/ijerph6020798. PMID: 19440416. PMCID: PMC2672364.
Article
10. Mamtani R, Cheema S, Sheikh J, Al Mulla A, Lowenfels A, Maisonneuve P. 2017; Cancer risk in waterpipe smokers: a meta-analysis. Int J Public Health. 62:73–83. DOI: 10.1007/s00038-016-0856-2. PMID: 27421466. PMCID: PMC5288449.
Article
11. Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB. 2015; Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 20:21138–56. DOI: 10.3390/molecules201219753. PMID: 26633317. PMCID: PMC6331972.
Article
12. Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. 2018; Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol. 9:1162. DOI: 10.3389/fphar.2018.01162. PMID: 30405405. PMCID: PMC6204759.
Article
13. Bengmark S. 2006; Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J Parenter Enteral Nutr. 30:45–51. DOI: 10.1177/014860710603000145. PMID: 16387899.
14. Oyagbemi AA, Saba AB, Ibraheem AO. 2009; Curcumin: from food spice to cancer prevention. Asian Pac J Cancer Prev. 10:963–7. PMID: 20192567.
15. Bisht K, Wagner KH, Bulmer AC. 2010; Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto- and DNA-protective dietary compounds. Toxicology. 278:88–100. DOI: 10.1016/j.tox.2009.11.008. PMID: 19903510.
Article
16. Kalpana C, Sudheer AR, Rajasekharan KN, Menon VP. 2007; Comparative effects of curcumin and its synthetic analogue on tissue lipid peroxidation and antioxidant status during nicotine-induced toxicity. Singapore Med J. 48:124–30. PMID: 17304391.
17. Stojković D, Petrović J, Soković M, Glamočlija J, Kukić-Marković J, Petrović S. 2013; In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J Sci Food Agric. 93:3205–8. DOI: 10.1002/jsfa.6156. PMID: 23553578.
18. Khan FA, Maalik A, Murtaza G. 2016; Inhibitory mechanism against oxidative stress of caffeic acid. J Food Drug Anal. 24:695–702. DOI: 10.1016/j.jfda.2016.05.003. PMID: 28911606.
Article
19. Akomolafe SF, Akinyemi AJ, Oboh G, Oyeleye SI, Ajayi OB, Omonisi AE, Owolabi FL, Atoyebi DA, Ige FO, Atoki VA. 2018; Co-administration of caffeine and caffeic acid alters some key enzymes linked with reproductive function in male rats. Andrologia. 50:e12839. DOI: 10.1111/and.12839. PMID: 28737015.
Article
20. Dekanski D, Spremo-Potparević B, Bajić V, Živković L, Topalović D, edojević DN Sr, Lazić V, Nedeljković JM. 2018; Acute toxicity study in mice of orally administrated TiO2 nanoparticles functionalized with caffeic acid. Food Chem Toxicol. 115:42–8. DOI: 10.1016/j.fct.2018.02.064. PMID: 29510221.
Article
21. Li Y, Chen LJ, Jiang F, Yang Y, Wang XX, Zhang Z, Li Z, Li L. 2015; Caffeic acid improves cell viability and protects against DNA damage: involvement of reactive oxygen species and extracellular signal-regulated kinase. Braz J Med Biol Res. 48:502–8. DOI: 10.1590/1414-431x20143729. PMID: 25831202. PMCID: PMC4470308.
Article
22. Ahn CB, Je JY, Kim YS, Park SJ, Kim BI. 2017; Induction of Nrf2-mediated phase II detoxifying/antioxidant enzymes in vitro by chitosan-caffeic acid against hydrogen peroxide-induced hepatotoxicity through JNK/ERK pathway. Mol Cell Biochem. 424:79–86. DOI: 10.1007/s11010-016-2845-4. PMID: 27743232.
23. Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, Wojtyczka RD, Buszman E, Stojko J. 2018; Caffeic acid versus caffeic acid phenethyl ester in the treatment of breast cancer MCF-7 cells: migration rate inhibition. Integr Cancer Ther. 17:1247–59. DOI: 10.1177/1534735418801521. PMID: 30246565. PMCID: PMC6247537.
Article
24. Andrade M, Benfeito S, Soares P, Magalhães e Silva D, Loureiro J, Borges A, Borges F, Simões M. 2015; Fine-tuning of the hydrophobicity of caffeic acid: studies on the antimicrobial activity against Staphylococcus aureus and Escherichia coli. RSC Adv. 5:53915–25. DOI: 10.1039/C5RA05840F.
Article
25. Tanida I, Shirasago Y, Suzuki R, Abe R, Wakita T, Hanada K, Fukasawa M. 2015; Inhibitory effects of caffeic acid, a coffee-related organic acid, on the propagation of hepatitis C virus. Jpn J Infect Dis. 68:268–75. DOI: 10.7883/yoken.JJID.2014.309. PMID: 25672401.
Article
26. Zhu Q, Sun Y, Yun X, Ou Y, Zhang W, Li JX. 2014; Antinociceptive effects of curcumin in a rat model of postoperative pain. Sci Rep. 4:4932. DOI: 10.1038/srep04932. PMID: 24816565. PMCID: PMC4017214.
Article
27. Salem AM, Ragheb AS, Hegazy MGA, Matboli M, Eissa S. 2019; Caffeic acid modulates miR-636 expression in diabetic nephropathy rats. Indian J Clin Biochem. 34:296–303. DOI: 10.1007/s12291-018-0743-0. PMID: 31391719. PMCID: PMC6660537.
Article
28. Shraideh ZA, Awaida W, Najjar H, Musleh M. 2011; A modified smoking machine for monitoring the effect of tobacco smoke on albino rats. Jordan J Biol Sci. 4:109–12.
29. Khabour OF, Alzoubi KH, Bani-Ahmad M, Dodin A, Eissenberg T, Shihadeh A. 2012; Acute exposure to waterpipe tobacco smoke induces changes in the oxidative and inflammatory markers in mouse lung. Inhal Toxicol. 24:667–75. DOI: 10.3109/08958378.2012.710918. PMID: 22906173. PMCID: PMC3752682.
Article
30. Al-Sawalha NA, Alzoubi KH, Khabour OF, Alyacoub W, Almahmood Y. 2019; Effect of waterpipe tobacco smoke exposure during lactation on learning and memory of offspring rats: role of oxidative stress. Life Sci. 227:58–63. DOI: 10.1016/j.lfs.2019.04.049. PMID: 31009626.
Article
31. Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. 2019; Waterpipe smoke exposure triggers lung injury and functional decline in mice: protective effect of Gum Arabic. Oxid Med Cell Longev. 2019:8526083. DOI: 10.1155/2019/8526083. PMID: 31178975. PMCID: PMC6501418.
Article
32. Nemmar A, Beegam S, Yuvaraju P, Yasin J, Ali BH, Adeghate E. 2020; Nose-only water-pipe smoke exposure in mice elicits renal histopathological alterations, inflammation, oxidative stress, DNA damage, and apoptosis. Front Physiol. 11:46. DOI: 10.3389/fphys.2020.00046. PMID: 32116758. PMCID: PMC7026484.
Article
33. Al-Awaida W, Najjar H, Shraideh Z. 2015; Structural characterization of rat ventricular tissue exposed to the smoke of two types of waterpipe. Iran J Basic Med Sci. 18:942–9. PMID: 26730327. PMCID: PMC4686577.
34. Liang Z, Lu L, Mao J, Li X, Qian H, Xu W. 2017; Curcumin reversed chronic tobacco smoke exposure induced urocystic EMT and acquisition of cancer stem cells properties via Wnt/β-catenin. Cell Death Dis. 8:e3066. DOI: 10.1038/cddis.2017.452. PMID: 28981096. PMCID: PMC5680574.
Article
35. Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. 2003; Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 63:4375–83. PMID: 12907607.
36. Suzuki M, Betsuyaku T, Ito Y, Nagai K, Odajima N, Moriyama C, Nasuhara Y, Nishimura M. 2009; Curcumin attenuates elastase- and cigarette smoke-induced pulmonary emphysema in mice. Am J Physiol Lung Cell Mol Physiol. 296:L614–23. DOI: 10.1152/ajplung.90443.2008. PMID: 19168576.
Article
37. Janbaz KH, Saeed SA, Gilani AH. 2004; Studies on the protective effects of caffeic acid and quercetin on chemical-induced hepatotoxicity in rodents. Phytomedicine. 11:424–30. DOI: 10.1016/j.phymed.2003.05.002. PMID: 15330498.
Article
38. Rastogi H, Jana S. 2014; Evaluation of inhibitory effects of caffeic acid and quercetin on human liver cytochrome p450 activities. Phytother Res. 28:1873–8. DOI: 10.1002/ptr.5220. PMID: 25196644.
Article
39. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB. 2008; Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol. 76:1590–611. DOI: 10.1016/j.bcp.2008.08.008. PMID: 18775680.
Article
40. Gonçalves RB, Coletta RD, Silvério KG, Benevides L, Casati MZ, da Silva JS, Nociti FH Jr. 2011; Impact of smoking on inflammation: overview of molecular mechanisms. Inflamm Res. 60:409–24. DOI: 10.1007/s00011-011-0308-7. PMID: 21298317.
Article
41. Ghazali WS, Romli AC, Mohamed M. 2017; Effects of honey supplementation on inflammatory markers among chronic smokers: a randomized controlled trial. BMC Complement Altern Med. 17:175. DOI: 10.1186/s12906-017-1703-6. PMID: 28351393. PMCID: PMC5371194.
Article
42. Petrescu F, Voican SC, Silosi I. 2010; Tumor necrosis factor-alpha serum levels in healthy smokers and nonsmokers. Int J Chron Obstruct Pulmon Dis. 5:217–22. DOI: 10.2147/COPD.S8330. PMID: 20714375. PMCID: PMC2921689.
43. Mercantepe T, Unal D, Tümkaya L, Yazici ZA. 2018; Protective effects of amifostine, curcumin and caffeic acid phenethyl ester against cisplatin-induced testis tissue damage in rats. Exp Ther Med. 15:3404–12. DOI: 10.3892/etm.2018.5819. PMID: 29545862. PMCID: PMC5840930.
Article
44. Yang WS, Jeong D, Yi YS, Park JG, Seo H, Moh SH, Hong S, Cho JY. 2013; IRAK1/4-targeted anti-inflammatory action of caffeic acid. Mediators Inflamm. 2013:518183. DOI: 10.1155/2013/518183. PMID: 24379523. PMCID: PMC3863464.
Article
45. Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. 2016; Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev. 2016:7432797. DOI: 10.1155/2016/7432797. PMID: 27738491. PMCID: PMC5055983.
Article
46. Nemmar A, Al Hemeiri A, Al Hammadi N, Yuvaraju P, Beegam S, Yasin J, Elwasila M, Ali BH, Adeghate E. 2015; Early pulmonary events of nose-only water pipe (shisha) smoking exposure in mice. Physiol Rep. 3:e12258. DOI: 10.14814/phy2.12258. PMID: 25780090. PMCID: PMC4393146.
Article
47. Nemmar A, Yuvaraju P, Beegam S, John A, Raza H, Ali BH. 2013; Cardiovascular effects of nose-only water-pipe smoking exposure in mice. Am J Physiol Heart Circ Physiol. 305:H740–6. DOI: 10.1152/ajpheart.00200.2013. PMID: 23812392.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr