Korean J Pain.  2020 Jan;33(1):23-29. 10.3344/kjp.2020.33.1.23.

The effect of human mesenchymal stem cell injection on pain behavior in chronic post-ischemia pain mice

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
  • 2Department of Anesthesiology and Pain Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
  • 3Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 4Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea

Abstract

Background
Neuropathic pain (NP) is considered a clinically incurable condition despite various treatment options due to its diverse causes and complicated disease mechanisms. Since the early 2000s, multipotent human mesenchymal stem cells (hMSCs) have been used in the treatment of NP in animal models. However, the effects of hMSC injections have not been studied in chronic post-ischemia pain (CPIP) mice models. Here, we investigated whether intrathecal (IT) and intrapaw (IP) injections of hMSCs can reduce mechanical allodynia in CPIP model mice.
Methods
Seventeen CPIP C57/BL6 mice were selected and randomized into four groups: IT sham (n = 4), IT stem (n = 5), IP sham (n = 4), and IP stem (n = 4). Mice in the IT sham and IT stem groups received an injection of 5 μL saline and 2 × 104 hMSCs, respectively, while mice in the IP sham and IP stem groups received an injection of 5 μL saline and 2 × 10 5 hMSCs, respectively. Mechanical allodynia was assessed using von Frey filaments from pre-injection to 30 days post-injection. Glial fibrillary acidic protein (GFAP) expression in the spinal cord and dorsal root ganglia were also evaluated.
Results
IT and IP injections of hMSCs improved mechanical allodynia. GFAP expression was decreased on day 25 post-injection compared with the sham group. Injections of hMSCs improved allodynia and GFAP expression was decreased compared with the sham group.
Conclusions
These results suggested that hMSCs may be also another treatment modality in NP model by ischemia-reperfusion.

Keyword

Ganglia; Spinal; Glial Fibrillary Acidic Protein; Hyperalgesia; Mesenchymal Stromal Cells; Mice; Neuralgia; Reperfusion Injury; Spinal Cord; Stem Cells

Figure

  • Fig. 1 The anti-allodynic effects of human mesenchymal stem cells (hMSCs) on pain withdrawal threstholds in chronic post-ischemia pain mice model by von Frey filament testing. (A) Paw withdrawal mechanical thresholds were reduced after day 26 in left hindpaw of the intrapaw (IP) stem compared with pre-injection and sham-operated mice groups (*P < 0.05). Also the pain withdrawal threshold of the left hindpaw significantly increased at day 26–31 after stem cell injection in the intrathecal (IT) stem group compared with pre-injection and sham-operated mice groups († P < 0.05). (B) In the contra-lateral hindpaw, there no significant difference in pain withdrawal threshold between the groups.

  • Fig. 2 The expression of glial fibrillary acidic protein (GFAP) in the spinal cord and dorsal root ganglion (DRG). (A) In intrathecal (IT) stem and intrapaw (IP) stem groups, GFAP expression reduced in the spinal cord and DRG (200× magnification). (B) And there is a significant decrease in the staining density of GFAP at day 31 after injection of human mesenchymal stem cells compared with sham groups. ATF3: activating transcription factor 3. a P < 0.001 vs. IP sham, b P < 0.001 vs. IT sham.


Reference

1. Hatch MN, Cushing TR, Carlson GD, Chang EY. Neuropathic pain and SCI: identification and treatment strategies in the 21st century. J Neurol Sci. 2018; 384:75–83. DOI: 10.1016/j.jns.2017.11.018. PMID: 29249383.
Article
2. Siniscalco D, Rossi F, Maione S. Molecular approaches for neuropathic pain treatment. Curr Med Chem. 2007; 14:1783–7. DOI: 10.2174/092986707781058913. PMID: 17627516.
Article
3. Cao Q, Benton RL, Whittemore SR. Stem cell repair of central nervous system injury. J Neurosci Res. 2002; 68:501–10. DOI: 10.1002/jnr.10240. PMID: 12111840.
Article
4. Lindvall O, Kokaia Z. Stem cell therapy for human brain disorders. Kidney Int. 2005; 68:1937–9. DOI: 10.1111/j.1523-1755.2005.00623.x. PMID: 16221169.
Article
5. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006; 441:1094–6. DOI: 10.1038/nature04960. PMID: 16810245.
Article
6. Klass M, Gavrikov V, Drury D, Stewart B, Hunter S, Denson DD, et al. Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy. Anesth Analg. 2007; 104:944–8. DOI: 10.1213/01.ane.0000258021.03211.d0. PMID: 17377111.
Article
7. Meirelles Lda S, Nardi NB. Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci (Landmark Ed). 2009; 14:4281–98. DOI: 10.2741/3528. PMID: 19273350.
8. Amemori T, Jendelová P, Růzicková K, Arboleda D, Syková E. Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat. Cytotherapy. 2010; 12:212–25. DOI: 10.3109/14653240903440103. PMID: 20196694.
Article
9. Schäfer S, Berger JV, Deumens R, Goursaud S, Hanisch UK, Hermans E. Influence of intrathecal delivery of bone marrow-derived mesenchymal stem cells on spinal inflammation and pain hypersensitivity in a rat model of peripheral nerve injury. J Neuroinflammation. 2014; 11:157. DOI: 10.1186/s12974-014-0157-8. PMID: 25212534. PMCID: 4172959.
Article
10. Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, et al. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci. 2011; 5:79. DOI: 10.3389/fnint.2011.00079. PMID: 22164136. PMCID: 3230031.
Article
11. Zhang EJ, Song CH, Ko YK, Lee WH. Intrathecal administration of mesenchymal stem cells reduces the reactive oxygen species and pain behavior in neuropathic rats. Korean J Pain. 2014; 27:239–45. DOI: 10.3344/kjp.2014.27.3.239. PMID: 25031809. PMCID: 4099236.
Article
12. Franchi S, Valsecchi AE, Borsani E, Procacci P, Ferrari D, Zalfa C, et al. Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. Pain. 2012; 152:850–61. DOI: 10.1016/j.pain.2012.01.008. PMID: 22321918.
Article
13. Liu L, Hua Z, Shen J, Yin Y, Yang J, Cheng K, et al. Comparative efficacy of multiple variables of mesenchymal stem cell transplantation for the treatment of neuropathic pain in rats. Mil Med. 2017; 182:175–84. DOI: 10.7205/MILMED-D-16-00096. PMID: 28291470.
Article
14. Siniscalco D, Giordano C, Galderisi U, Luongo L, Alessio N, Di Bernardo G, et al. Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell Mol Life Sci. 2010; 67:655–69. DOI: 10.1007/s00018-009-0202-4. PMID: 19937263.
Article
15. Vaquero J, Zurita M, Oya S, Santos M. Cell therapy using bone marrow stromal cells in chronic paraplegic rats: systemic or local administration? Neurosci Lett. 2006; 398:129–34. DOI: 10.1016/j.neulet.2005.12.072. PMID: 16423458.
Article
16. Chen G, Park CK, Xie RG, Ji RR. Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion. J Clin Invest. 2015; 125:3226–40. DOI: 10.1172/JCI80883. PMID: 26168219. PMCID: 4563753.
Article
17. Chen C, Chen F, Yao C, Shu S, Feng J, Hu X, et al. Intrathecal injection of human umbilical cord-derived mesenchymal stem cells ameliorates neuropathic pain in rats. Neurochem Res. 2016; 41:3250–60. DOI: 10.1007/s11064-016-2051-5. PMID: 27655256.
Article
18. Bonfield TL, Caplan AI. Adult mesenchymal stem cells: an innovative therapeutic for lung diseases. Discov Med. 2010; 9:337–45. PMID: 20423678.
19. Pan HC, Cheng FC, Chen CJ, Lai SZ, Lee CW, Yang DY, et al. Post-injury regeneration in rat sciatic nerve facilitated by neurotrophic factors secreted by amniotic fluid mesenchymal stem cells. J Clin Neurosci. 2007; 14:1089–98. DOI: 10.1016/j.jocn.2006.08.008. PMID: 17954375.
Article
20. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain. 2004; 111:116–24. DOI: 10.1016/j.pain.2004.06.008. PMID: 15327815.
Article
21. Pisati F, Bossolasco P, Meregalli M, Cova L, Belicchi M, Gavina M, et al. Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases. Cell Transplant. 2007; 16:41–55. DOI: 10.3727/000000007783464443. PMID: 17436854.
Article
22. Siniscalco D, Rossi F, Maione S. Stem cell therapy for neuropathic pain treatment. J Stem Cells Regen Med. 2007; 3:2–11. PMID: 24693013. PMCID: 3908122.
Article
23. Coderre TJ, Xanthos DN, Francis L, Bennett GJ. Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain. 2004; 112:94–105. DOI: 10.1016/j.pain.2004.08.001. PMID: 15494189.
Article
24. Hylden JL, Wilcox GL. Intrathecal morphine in mice: a new technique. Eur J Pharmacol. 1980; 67:313–6. DOI: 10.1016/0014-2999(80)90515-4. PMID: 6893963.
Article
25. Kim H, Kim HY, Choi MR, Hwang S, Nam KH, Kim HC, et al. Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci Lett. 2010; 468:190–4. DOI: 10.1016/j.neulet.2009.10.074. PMID: 19879334.
Article
26. Bonin RP, Bories C, De Koninck Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol Pain. 2014; 10:26. DOI: 10.1186/1744-8069-10-26. PMID: 24739328. PMCID: 4020614.
Article
27. Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol. 2007; 211:27–35. DOI: 10.1002/jcp.20959. PMID: 17226788.
Article
28. Lin CR, Wu PC, Shih HC, Cheng JT, Lu CY, Chou AK, et al. Intrathecal spinal progenitor cell transplantation for the treatment of neuropathic pain. Cell Transplant. 2002; 11:17–24. DOI: 10.3727/096020198389744. PMID: 12095216.
Article
29. Eaton MJ, Plunkett JA, Martinez MA, Lopez T, Karmally S, Cejas P, et al. Transplants of neuronal cells bioengineered to synthesize GABA alleviate chronic neuropathic pain. Cell Transplant. 1999; 8:87–101. DOI: 10.1177/096368979900800102. PMID: 10338278.
Article
30. Franchi S, Castelli M, Amodeo G, Niada S, Ferrari D, Vescovi A, et al. Adult stem cell as new advanced therapy for experimental neuropathic pain treatment. Biomed Res Int. 2014; 2014:470983. DOI: 10.1155/2014/470983. PMID: 25197647. PMCID: 4147203.
Article
31. Siniscalco D, Giordano C, Galderisi U, Luongo L, Alessio N, Di Bernardo G, et al. Human mesenchymal stem cells as novel neuropathic pain tool. J Stem Cells Regen Med. 2010; 6:127. PMID: 24693137.
32. Zurita M, Vaquero J. Functional recovery in chronic paraplegia after bone marrow stromal cells transplantation. Neuroreport. 2004; 15:1105–8. DOI: 10.1097/00001756-200405190-00004. PMID: 15129154.
Article
33. Soleymaninejadian E, Pramanik K, Samadian E. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol. 2012; 67:1–8. DOI: 10.1111/j.1600-0897.2011.01069.x. PMID: 21951555.
Article
34. Knaän-Shanzer S. Concise review: the immune status of mesenchymal stem cells and its relevance for therapeutic application. Stem Cells. 2014; 32:603–8. DOI: 10.1002/stem.1568. PMID: 24123756.
Article
35. Birklein F, Dimova V. Complex regional pain syndrome-up-to-date. Pain Rep. 2017; 2:e624. DOI: 10.1097/PR9.0000000000000624. PMID: 29392238. PMCID: 5741324.
Article
36. Goris RJ. Reflex sympathetic dystrophy: model of a severe regional inflammatory response syndrome. World J Surg. 1998; 22:197–202. DOI: 10.1007/s002689900369. PMID: 9451936.
Article
37. Guo W, Wang H, Zou S, Gu M, Watanabe M, Wei F, et al. Bone marrow stromal cells produce long-term pain relief in rat models of persistent pain. Stem Cells. 2011; 29:1294–303. DOI: 10.1002/stem.667. PMID: 21630378. PMCID: 3277433.
Article
38. Siniscalco D. Transplantation of human mesenchymal stem cells in the study of neuropathic pain. Methods Mol Biol. 2010; 617:337–45. DOI: 10.1007/978-1-60327-323-7_25. PMID: 20336433.
Article
39. Musolino PL, Coronel MF, Hökfelt T, Villar MJ. Bone marrow stromal cells induce changes in pain behavior after sciatic nerve constriction. Neurosci Lett. 2007; 418:97–101. DOI: 10.1016/j.neulet.2007.03.001. PMID: 17379405.
Article
40. Naruse K, Sato J, Funakubo M, Hata M, Nakamura N, Kobayashi Y, et al. Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, cold allodynia and nerve function in diabetic neuropathy. PLoS One. 2011; 6:e27458. DOI: 10.1371/journal.pone.0027458. PMID: 22125614. PMCID: 3220696.
Article
41. Allen G, Galer BS, Schwartz L. Epidemiology of complex regional pain syndrome: a retrospective chart review of 134 patients. Pain. 1999; 80:539–44. DOI: 10.1016/S0304-3959(98)00246-2. PMID: 10342415.
Article
42. Maleki J, LeBel AA, Bennett GJ, Schwartzman RJ. Patterns of spread in complex regional pain syndrome, type I (reflex sympathetic dystrophy). Pain. 2000; 88:259–66. DOI: 10.1016/S0304-3959(00)00332-8. PMID: 11068113.
Article
43. Koltzenburg M, Wall PD, McMahon SB. Does the right side know what the left is doing? Trends Neurosci. 1999; 22:122–7. DOI: 10.1016/S0166-2236(98)01302-2. PMID: 10199637.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr